- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Background Info: Let $\mathbb{V}$ be an $m$-dimensional vector space over the field $\mathbb{F}$ (where $\mathbb{F}$ can be either $\mathbb{R}$ or $\mathbb{C}$). If $\omega$ is a non-degenerate alternating bilinear form, then the pairing $(\mathbb{V},\omega)$ is called a symplectic vector space. A symplectic basis for $\mathbb{V}$ is a basis $v_1,\ldots,v_{2n}$ such that $\omega(v_i,v_j)=J_{i,j}$, which is the $(i,j)$-th entry of the $2n\times 2n$ matrix
\[J=\begin{pmatrix} \mathbf{0}_n & I_n\\ -I_n & \mathbf{0}_n\end{pmatrix}.\]A Lagrangian space $\mathbb{U}$ is a subspace of $\mathbb{V}$ of dimension $n$ such that $\omega$ is zero on $\mathbb{U}$; i.e. $\omega(u,w)=0$ for all $u,w\in\mathbb{U}$. A direct sum decomposition $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$ where $\mathbb{U}$ and $\mathbb{W}$ are Lagrangian subspaces is called a Lagrangian splitting, and $\mathbb{W}$ is called the Lagrangian complement of $\mathbb{U}$.
Problem:
-----
Hints:
-----
Background Info: Let $\mathbb{V}$ be an $m$-dimensional vector space over the field $\mathbb{F}$ (where $\mathbb{F}$ can be either $\mathbb{R}$ or $\mathbb{C}$). If $\omega$ is a non-degenerate alternating bilinear form, then the pairing $(\mathbb{V},\omega)$ is called a symplectic vector space. A symplectic basis for $\mathbb{V}$ is a basis $v_1,\ldots,v_{2n}$ such that $\omega(v_i,v_j)=J_{i,j}$, which is the $(i,j)$-th entry of the $2n\times 2n$ matrix
\[J=\begin{pmatrix} \mathbf{0}_n & I_n\\ -I_n & \mathbf{0}_n\end{pmatrix}.\]A Lagrangian space $\mathbb{U}$ is a subspace of $\mathbb{V}$ of dimension $n$ such that $\omega$ is zero on $\mathbb{U}$; i.e. $\omega(u,w)=0$ for all $u,w\in\mathbb{U}$. A direct sum decomposition $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$ where $\mathbb{U}$ and $\mathbb{W}$ are Lagrangian subspaces is called a Lagrangian splitting, and $\mathbb{W}$ is called the Lagrangian complement of $\mathbb{U}$.
Problem:
- Let $\mathbb{U}$ be a Lagrangian subspace of $\mathbb{V}$. Show that there exists a Lagrangian complement of $\mathbb{U}$
- Let $\mathbb{V}=\mathbb{U}\oplus\mathbb{W}$ be a Lagrangian splitting and $x_1,\ldots,x_n$ any basis form $\mathbb{U}$. Show that there exists a unique basis $y_1,\ldots y_n$ of $\mathbb{W}$ such that $x_1,\ldots,x_n,y_1,\ldots,y_n$ is a symplectic basis for $\mathbb{V}$.
-----
Hints:
- Take $\mathbb{W}=J\mathbb{U}$ and show that it's a Lagrangian complement to $\mathbb{U}$.
- Define the annihilator of $\mathbb{W}$ by $\mathbb{W}^0 = \{f\in\mathbb{V}^{\ast}: f(e)=0\text{ for all $e\in\mathbb{W}$}\}$. Define $\phi_i\in\mathbb{W}^0$ by $\phi_i(w)=\omega(x_i,w)$ for $w\in\mathbb{W}$. Show that $\phi_1,\ldots,\phi_n$ forms a basis for $\mathbb{W}^0$.