MHB Can You Solve This Trigonometric Equation for $x$?

Click For Summary
The discussion revolves around solving the trigonometric equation $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0 < x < 180^\circ$. Participants engage in deriving solutions and simplifying the equation, with some noting the importance of understanding the sine function's periodicity. A solution was identified that had initially been overlooked, highlighting the collaborative nature of problem-solving in the forum. The conversation emphasizes the significance of careful analysis in trigonometric equations. Overall, the thread showcases effective mathematical discourse and solution-finding.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.
 
Mathematics news on Phys.org
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$$\sin2028^\circ\sin210^\circ=-\dfrac{\sin228^\circ}{2}=\dfrac{\sin48^\circ}{2}$$

$$\sin48^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$3\sin16^\circ-4\sin^316^\circ=4\sin(x+30^\circ)\sin16^\circ\sin76^\circ$$

$$1+2\cos32^\circ=4\sin(x+30^\circ)\sin76^\circ$$

$$1+2\cos32^\circ=2(\cos(x-46^\circ)-\cos(x+106^\circ))$$

$$\text{By inspection, }x=14^\circ$$
 
anemone said:
Solve for $x$ such that $2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$ for $0\lt x \lt 180^\circ$.

$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ=\sin 2028^\circ \sin 210^\circ$
= $\sin (360^\circ * 5 + 180^\circ + 48^\circ) \sin (180^\circ +30^\circ)$
= $(-\sin\, 48^\circ) (-\sin \,30^\circ)$
= $\dfrac{\sin\,48^\circ}{2}$
= $\dfrac{\sin\, 3*16^\circ}{2}$
= $\dfrac{3\sin\,16^\circ-4\sin ^3 16^\circ}{2}$
hence
$2\sin(x+30^\circ)\sin 16^\circ \sin 76^\circ = \sin\,16^\circ \dfrac{3-4\sin ^2 16^\circ}{2}$
or
$4\sin(x+30^\circ)\sin 76^\circ = 3-4\sin ^2 16^\circ$
= $ 1 + 2(1-2\sin^2 16^\circ)$
= $ 1+ 2 \cos\,32^\circ$
= $(2(\cos\,60^\circ +2 \cos\,32^\circ)$
= $ 2 (2 \cos\,46^\circ \cos\,14^\circ)$
= $ 4 \cos\,46^\circ \sin \,76^\circ$
hence
$\sin(x+30^\circ)=\cos\,46^\circ=\sin\,44^\circ$
or $x=14^\circ$

edit there is a solution I missed based on comment below
in the 2nd quadrant
$\sin(x+30^\circ)=\sin\,136^\circ$
so $x= 106^\circ$
 
Last edited:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
 
anemone said:
Thanks both for participating and the solution...but...

Are you certain you haven't missed any solution? (Mmm)
I missed the solution $x + 30^\circ = 136^\circ$ or $x = 106^\circ$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K