- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Four real numbers $p,\,q,\,r,\,s$ satisfy the equations $p+q+r+s=9$ and $p^2+q^2+r^2+s^2=21$. Prove that there exists a permutation $(a,\,b,\,c,\,d)$ of $(p,\,q,\,r,\,s)$ such that $ab-cd\ge 2$.
-----
-----
Four real numbers $p,\,q,\,r,\,s$ satisfy the equations $p+q+r+s=9$ and $p^2+q^2+r^2+s^2=21$. Prove that there exists a permutation $(a,\,b,\,c,\,d)$ of $(p,\,q,\,r,\,s)$ such that $ab-cd\ge 2$.
-----