Can You Tackle Our Latest Math Challenge on Limits?

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    2016
In summary, the purpose of this week's POTW and evaluating a limit is to improve problem-solving skills in calculus and develop critical thinking and analytical skills. To solve the POTW, one must carefully read the problem, identify variables, and use mathematical concepts. Evaluating limits is important in understanding function behavior and has various applications. Tips for solving the POTW and evaluating a limit include careful reading, drawing diagrams, and double-checking answers. An example of solving a POTW and evaluating a limit is finding the limit as x approaches 2 for f(x) = (x^2 - 4)/(x - 2), which simplifies to x + 2 and gives a limit of 4.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Here is this week's POTW:

-----

Evaluate the following limit:

\(\displaystyle \large \lim_{x \rightarrow 2} \left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}} \times \frac{\sqrt[3]{x^3-\sqrt {x^2+60}}}{\sqrt{x^2-\sqrt[3] {x^2+60}}} \right)\)

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
No one answered last week's problem. :(

You can find my solution below:

First, note that $6x^4-12x^3-x+2$ can be factorized as $6(2)^4-12(2)^3-(2)+2=96-96-2+2=0$, factorize it using the long polynomial division by the factor $x-2$, we get $6x^4-12x^3-x+2=(x-2)(6x^3-1)$.

So evaluating \(\displaystyle \large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\) is equivalent in evaluating \(\displaystyle \large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\).

If we could think of another polynomial function of $f$, and multiply the top and bottom of the argument rational function inside the sixth root by the function of $f$, which for certain the function of $f$ also has a factor of $x-2$, then we could cross out the $x-2$ from top and bottom. But this function of $f$ must fulfill another criterion, it has to be closely related to $\sqrt[3]{x^3-\sqrt{x^2+60}}$ and $\sqrt{x^2-\sqrt[3]{x^2+60}}$:

\(\displaystyle \large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

It's tempted to try out the option $f(x)=x^6-x^2-60$ since $f(2)=2^6-2^2-60=64-4-60=0$, and $f(x)=(x-2)(x+2)(x^4+4x^2+15)$

\(\displaystyle \large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{\cancel{(x-2)}(6x^3-1)}{x+2}\cdot \frac{x^6-x^2-60}{\cancel{(x-2)}(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{x+2}\cdot \frac{x^6-x^2-60}{(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \sqrt[6]{x^6-x^2-60}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^6-x^2-60}}{\sqrt[3]{x^6-x^2-60}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\,\,\small\text{as $\frac{1}{6}=\frac{1}{2}-\frac{1}{3}$}\)

\(\displaystyle =\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2)^3-\sqrt[3]{(x^2+60)^3}}}{\sqrt[3]{(x^3)^2-\sqrt{(x^2+60)^2}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle \small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2-\sqrt[3]{x^2+60})}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3-\sqrt{x^2+60}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\)

\(\displaystyle \small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\cancel{\sqrt{(x^2-\sqrt[3]{x^2+60})}}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}}{\cancel{\sqrt{x^2-\sqrt[3]{x^2+60}}}}\right)\)

\(\displaystyle = \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)\)

Now, we can safely evaluate the limit by plugging in $x=2$ into the expression and get:

\(\displaystyle \small \begin{align*}\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)&=\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)\\&=\sqrt[6]{\frac{6(2)^3-1}{(2+2)^2(2^4+4(2)^2+15)}}\cdot \frac{\sqrt{2^4+2^2\sqrt[3]{2^2+60}+\sqrt[3]{(2^2+60)^2}}}{\sqrt[3]{2^3+\sqrt{2^2+60}}}\\&=\sqrt[6]{\frac{47}{(4)^2(47)}}\cdot \frac{\sqrt{16+2^2(4)+(4)^2}}{\sqrt[3]{8+8}}\\&=\sqrt[6]{\frac{1}{4^2}}\cdot \frac{\sqrt{48}}{\sqrt[3]{16}}\\&=\frac{1}{2^{\frac{4}{6}}}\cdot \frac{4\sqrt{3}}{2^{\frac{4}{3}}}\\&=\frac{4\sqrt{3}}{4}\\&=\sqrt{3}\end{align*}\)
 

FAQ: Can You Tackle Our Latest Math Challenge on Limits?

What is the purpose of solving this week's POTW and evaluating a limit?

The purpose of solving this week's POTW (Problem of the Week) and evaluating a limit is to practice and improve problem-solving skills in mathematics, specifically in the area of calculus. It also helps to develop critical thinking and analytical skills.

How do you solve this week's POTW and evaluate a limit?

To solve the POTW, you need to carefully read and understand the problem, identify the variables and given information, and use mathematical concepts and techniques to find the solution. To evaluate a limit, you can use algebraic manipulation, substitution, or graphical methods.

What is the importance of evaluating limits in mathematics?

Evaluating limits is important in mathematics because it helps to understand the behavior of a function at a particular point or as the input approaches a certain value. This is useful in various applications, such as finding maximum and minimum values, determining rates of change, and analyzing the convergence or divergence of series.

Are there any tips for solving this week's POTW and evaluating a limit?

Yes, some tips for solving the POTW and evaluating a limit include: carefully reading and understanding the problem, drawing diagrams or graphs, using algebraic manipulation and substitution, checking for special cases, and double-checking your answer.

Can you provide an example of solving a POTW and evaluating a limit?

Sure, for example, if the POTW is to find the limit as x approaches 2 for the function f(x) = (x^2 - 4)/(x - 2), we can simplify the expression to f(x) = x + 2 and evaluate the limit as x approaches 2. This gives us a limit of 4, since f(2) = 2 + 2 = 4. Therefore, the solution to this week's POTW is 4.

Similar threads

Back
Top