- #1
Irishdoug
- 102
- 16
- Homework Statement
- I am self studying and cannot understand a cancellation of terms that occurs in the text.
- Relevant Equations
- In thermal equilibrium at temperature T, with N particles all of mass N, the internal energy is equal to the kinetic energy i.e. U = E
$$E = \frac{1}{2M} \sum_{i=1}^{N} (p_{xi}^{2} + p_{yi}^{2} + p_{zi}^{2})$$
$$E_{average} = U = \frac{\frac{1}{2M} \sum_{\alpha = 1}^{3N} p_{\alpha}^{2} \int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}{\int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}$$
as we know from classical physics that the average value of a quantity A in thermal equilibrium is
$$A_{average} = \frac{A(p,q) \int_{-\infty}^{\infty} e^{\frac{-E}{k_{b}T} }dpdq} {\int_{-\infty}^{\infty} e^{\frac{-E}{k_{b}T} }dpdq}$$
I'm happy I understand why the dq terms cancel out. So,
$$E_{average} = U = \frac{\frac{1}{2M} \sum_{\alpha = 1}^{3N} p_{\alpha}^{2} \int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}{\int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}$$
This term reduces to
$$E_{average} = U = \frac{\frac{1}{2M} \int_{-\infty}^{\infty} p_{\alpha}^{2} e^{\frac{-p_{\alpha}^{2}}{2M k_{b}T}} dp_{\alpha}} {\int_{-\infty}^{\infty} e^{\frac{-p_{\alpha}^{2}}{2M k_{b}T}} dp_{\alpha}}$$
I do not see how this occurs. I have attempted to play around with the exponentials e.g. using ##e^{a-b} = \frac{e^{a}}{e^{b}}## but here I am left with ##e^{0}##. I have also explicitedly written out the summation and multiplication but it does not seem to help.
Any help or tips appreciated.
$$E_{average} = U = \frac{\frac{1}{2M} \sum_{\alpha = 1}^{3N} p_{\alpha}^{2} \int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}{\int_{-\infty}^{\infty} \Pi_{\beta = 1}^{3N} e^{\frac{-p_{\beta}^{2}}{2M k_{b}T} }dp}$$
This term reduces to
$$E_{average} = U = \frac{\frac{1}{2M} \int_{-\infty}^{\infty} p_{\alpha}^{2} e^{\frac{-p_{\alpha}^{2}}{2M k_{b}T}} dp_{\alpha}} {\int_{-\infty}^{\infty} e^{\frac{-p_{\alpha}^{2}}{2M k_{b}T}} dp_{\alpha}}$$
I do not see how this occurs. I have attempted to play around with the exponentials e.g. using ##e^{a-b} = \frac{e^{a}}{e^{b}}## but here I am left with ##e^{0}##. I have also explicitedly written out the summation and multiplication but it does not seem to help.
Any help or tips appreciated.
Last edited: