Cannot understand what ##(mod ~ \pi)## means in the given formula

In summary: Actually, using ##\mathbb Z## would have probably been better since some (many?) people do not include 0 in ##\mathbb N##.
  • #1
vcsharp2003
897
177
Homework Statement
What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations
None
Inverse Trig Functions formula.png


My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
 
Physics news on Phys.org
  • #2
vcsharp2003 said:
Homework Statement:: What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations:: None

View attachment 324323

My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
Look at the pictures here:
https://de.wikipedia.org/wiki/Arkusfunktion

##x \longmapsto \operatorname{arctan}(x)## is not only possible on its main branch between ##\pm\dfrac{\pi}{2}## but also below and above. We have ##\tan\left(\alpha + \dfrac{\pi}{2}\mathbb{Z}\right)=x,## i.e. infinitely many values of the tangent function map to the same function value. The inverse "function" can therefore be defined on any interval ##\operatorname{arctan}(x) \in \left[n\dfrac{\pi}{2},(n+1)\dfrac{\pi}{2}\right]## for some ##n\in \mathbb{Z}.##
 
  • #3
fresh_42 said:
Look at the pictures here:
https://de.wikipedia.org/wiki/Arkusfunktion

##x \longmapsto \operatorname{arctan}(x)## is not only possible on its main branch between ##\pm\dfrac{\pi}{2}## but also below and above. We have ##\tan\left(\alpha + \dfrac{\pi}{2}\mathbb{Z}\right)=x,## i.e. infinitely many values of the tangent function map to the same function value. The inverse "function" can therefore be defined on any interval ##\operatorname{arctan}(x) \in \left[n\dfrac{\pi}{2},(n+1)\dfrac{\pi}{2}\right]## for some ##n\in \mathbb{Z}.##
Does this mean that we are adding an integer multiple of ##\pi## to the first term in the formula mentioned in question where an integer could be any positive or negative integer including 0?
 
  • #4
vcsharp2003 said:
Does this mean that we are adding an integer multiple of ##\pi## to the first term in the formula mentioned in question where an integer could be any positive or negative integer including 0?
The inverse tangent function has only unique function values in an interval of length ##\pi##, usually, ##\left(-\dfrac{\pi}{2}\, , \,\dfrac{\pi}{2}\right).## Since ##\tan\left(\alpha+ \pi\mathbb{Z}\right)## is the same real number, we cannot uniquely determine one number as its inverse. We first have to determine in which interval our angles are. E.g. ##\operatorname{arctan} (\pi / 3)\approx 0.81.## Therefore
\begin{align*}
\operatorname{arctan}(\pi/3)+\operatorname{arctan}(\pi/3)&\approx 1.62 \\
&=\operatorname{arctan}\left(\dfrac{\dfrac{2\pi}{3}}{1-\dfrac{\pi^2}{9}}\right)\\
&=\operatorname{arctan}\left(\dfrac{6\pi}{9-\pi^2}\right)\\
&\approx \operatorname{arctan}(-21.676)\\
&\approx -1.5247
\end{align*}
which is obviously wrong. However, ##-1.5247 + \pi \approx 1.617## which is pretty close to ##1.62## if we consider all the approximations I made. So ##\mod \pi## means that the left- and right-hand side of our formulas can differ by ##\pm \pi.##
 
  • Like
Likes vcsharp2003
  • #5
vcsharp2003 said:
Homework Statement:: What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations:: None

View attachment 324323

My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
In general, (mod ##\pi##) means ##\pm n \pi## for some ##n \in \mathbb N##.
UPDATE: I probably should have said ##+ i \pi## for some integer ##i \in \mathbb Z## since some (many?) people do not include 0 in ##\mathbb N## and I need to include 0.
 
Last edited:
  • Like
Likes vcsharp2003
  • #6
FactChecker said:
In general, (mod ##\pi##) means ##\pm n \pi## for some ##n \in \mathbb N##.
Shouldn't ##n \in \mathbb Z##? Oh, I get it since you used a plus minus before ##n##.
 
  • Like
Likes fresh_42
  • #7
vcsharp2003 said:
Shouldn't ##n \in \mathbb Z##?
Yes, but the ##\pm## does that.
 
  • Like
Likes vcsharp2003
  • #8
vcsharp2003 said:
Shouldn't ##n \in \mathbb Z##? Oh, I get it since you used a plus minus before ##n##.
Actually, using ##\mathbb Z## would have probably been better since some (many?) people do not include 0 in ##\mathbb N## and I do need to include 0.
 
Last edited:
  • Like
Likes vcsharp2003

FAQ: Cannot understand what ##(mod ~ \pi)## means in the given formula

What does "mod" mean in mathematical notation?

"Mod" stands for modulo, which is a mathematical operation that finds the remainder when one number is divided by another. In the context of angles and trigonometric functions, it often means reducing the angle to a standard range, such as between 0 and 2π or -π and π.

How is "mod ~ π" used in trigonometric functions?

When you see "mod ~ π" in a formula involving angles, it typically means that the angle should be reduced to a value within the range of -π to π. This is useful for simplifying calculations and ensuring consistency when dealing with periodic functions like sine and cosine.

Why is "mod ~ π" important in trigonometry?

Angles in trigonometry are periodic, meaning they repeat every 2π radians. Using "mod ~ π" helps to normalize angles, making it easier to compare them and work with trigonometric identities. It essentially keeps the angle within a manageable and interpretable range.

Can you provide an example of using "mod ~ π" in a formula?

Sure! Suppose you have an angle θ = 5π/4. To reduce this angle using "mod ~ π", you would subtract 2π (since 5π/4 is greater than π) to get θ = 5π/4 - 2π = -3π/4. Now, θ is within the range of -π to π.

Is "mod ~ π" the same as "mod 2π"?

No, "mod ~ π" and "mod 2π" are not the same. "Mod 2π" reduces an angle to the range of 0 to 2π, whereas "mod ~ π" reduces it to the range of -π to π. The choice between them depends on the context and the specific requirements of the problem you are solving.

Back
Top