- #1
aleksbooker
- 22
- 0
Homework Statement
Find the area of the surface generated by revolving the curve
[itex]x=\frac{e^y + e^{-y} }{2}[/itex]
from 0 [itex]\leq[/itex] y [itex]\leq[/itex] ln(2) about the y-axis.
The Attempt at a Solution
I tried the normal route first...
g(y) = x = [itex]\frac{1}{2} (e^y + e^{-y})[/itex]
g'(y) = dx/dy = [itex]\frac{1}{2} (e^y - e^{-y}) [/itex]
S = [itex]\int 2\pi \frac{1}{2} (e^y + e^{-y}) \sqrt{1+(e^y - e^{-y})^2} dy[/itex]
S = [itex]\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4}e^{2y}+\frac{1}{2}+\frac{1}{4}e^{-2y} } dy[/itex]
S = [itex]\pi \int (e^y + e^{-y}) \sqrt{\frac{1}{4} (e^y+e^{-y})^2} dy[/itex]
S = [itex]\pi \int (e^y + e^{-y}) \frac {1}{2} (e^y+e^{-y}) dy[/itex]
But then I got stuck here...
S = [itex]\frac{1}{2} \pi \int (e^y + e^{-y})^2 dy [/itex]
How should I proceed? Thanks in advance.