- #1
SmashtheVan
- 42
- 0
So Polarization of light has always really bugged me. Linear polarization is simple. I understand Elliptical and Circular as well; the Electric Field vector changes as the Ex and Ey(or Ex and Ez, etc) functions grow and recede, periodically. This is easy to show as the propagation of a singular wave/photon packet(I like to call them wavons, just to have some fun)
Now, for Unpolarized light, if I try to think in terms of a "random variable" function for Ex and Ey, I think, well, it looks like the resultant E field is accelerating/decelerating constantly from one instant to the next, shouldn't there be some outside force needed to provide that change? My other thought is that instead of talking about "Unpolarized Light" as a "wavon" with a randomly fluctuating field, we should instead think of Unpolarized Light as a beam of infinitesimal light beams, each of a different polarization(say linear, at different angles due to initial conditions upon emission from a source), such that at any instant the resultant E field summation is random...is this second line of thought at all correct?
2nd question:
I am working through a book for a training course for my job(in optics, of course), in which polarization is termed either TM or TE(transverse magnetic/electric), and I have no clue what this means. My interpretation of the textbook makes me think they're implying a part of the Electric Field is traveling in the same plane as the Magnetic field, which I know Maxwell would disapprove of. I also gather that these definitions are only relevant in relation to an interface of reflection/refraction. I guess I just want to know a better definition for TM/TE, and how exactly they relate to said optical interface. The book is written by the professor, so some things are explained very hazily, and its been a long time since my class on Hecht's text
Thanks!
Now, for Unpolarized light, if I try to think in terms of a "random variable" function for Ex and Ey, I think, well, it looks like the resultant E field is accelerating/decelerating constantly from one instant to the next, shouldn't there be some outside force needed to provide that change? My other thought is that instead of talking about "Unpolarized Light" as a "wavon" with a randomly fluctuating field, we should instead think of Unpolarized Light as a beam of infinitesimal light beams, each of a different polarization(say linear, at different angles due to initial conditions upon emission from a source), such that at any instant the resultant E field summation is random...is this second line of thought at all correct?
2nd question:
I am working through a book for a training course for my job(in optics, of course), in which polarization is termed either TM or TE(transverse magnetic/electric), and I have no clue what this means. My interpretation of the textbook makes me think they're implying a part of the Electric Field is traveling in the same plane as the Magnetic field, which I know Maxwell would disapprove of. I also gather that these definitions are only relevant in relation to an interface of reflection/refraction. I guess I just want to know a better definition for TM/TE, and how exactly they relate to said optical interface. The book is written by the professor, so some things are explained very hazily, and its been a long time since my class on Hecht's text
Thanks!
Last edited: