- #1
sir_manning
- 66
- 0
Hi
I have a question about the capillary force between two hydrophilic surfaces. I am working with small cantilevers (5-50 um long, 5 um wide, 200 nm thick). If L represents the lever, which is hydrophilic, and X represents some bulk material (also hydrophilic), a profile of the lever looks like:
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
XX
XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
The levers are immersed in water and then dried slowly. My question is, when does the lever (L) begin to experience an attraction to the material (X)? Will the capillary force start when it is immersed, or only when there is a small amount of water between the lever and the material? Basically, I'm wondering if I can get around any capillary forces by keeping the cantilevers in water.
Thanks.
I have a question about the capillary force between two hydrophilic surfaces. I am working with small cantilevers (5-50 um long, 5 um wide, 200 nm thick). If L represents the lever, which is hydrophilic, and X represents some bulk material (also hydrophilic), a profile of the lever looks like:
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
XX
XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
The levers are immersed in water and then dried slowly. My question is, when does the lever (L) begin to experience an attraction to the material (X)? Will the capillary force start when it is immersed, or only when there is a small amount of water between the lever and the material? Basically, I'm wondering if I can get around any capillary forces by keeping the cantilevers in water.
Thanks.