- #1
TheFistGuy
- 7
- 1
Hello, I would really appreciate if someone helped me to figure this out.
Suppose we have got a car A and car B. They both have got the same body (aerodynamics), tires, center of mass, the only difference is that the car B is x times heavier than car A. Now suppose they are both going around the same corner without loosing traction and without going sideways.
The question is which car can go around the corner faster?
My intuition tells me that the lightest car can corner faster, because car B is heavier thus it has more inertia and when going the same speed it has got higher kinetic energy. But the heaviest car should also have more friction between tires and road resulting in better traction when cornering. Do both of these effects cancel each other out?
Suppose we have got a car A and car B. They both have got the same body (aerodynamics), tires, center of mass, the only difference is that the car B is x times heavier than car A. Now suppose they are both going around the same corner without loosing traction and without going sideways.
The question is which car can go around the corner faster?
My intuition tells me that the lightest car can corner faster, because car B is heavier thus it has more inertia and when going the same speed it has got higher kinetic energy. But the heaviest car should also have more friction between tires and road resulting in better traction when cornering. Do both of these effects cancel each other out?