- #1
yaa09d
- 15
- 0
Let [tex]V[/tex] be a vector space over an infinite field [tex]$\mathbf{k}$[/tex]. Let [tex]\beta[/tex] be a basis of [tex]V[/tex].
In this case we can write
[tex]V\cong \mathbf{k}^{\oplus \beta}:=\bigl\{ f\colon\beta\to \mathbf{k}\bigm| f(\mathbf{b})=\mathbf{0}\text{ for all but finitely many }\mathbf{b}\in\beta\bigr\}.
[/tex]
Q:Show that card([tex]V[/tex]) = card([tex] \mathbf{k} [/tex]) card([tex]\beta [/tex])
Can anyone help?
In this case we can write
[tex]V\cong \mathbf{k}^{\oplus \beta}:=\bigl\{ f\colon\beta\to \mathbf{k}\bigm| f(\mathbf{b})=\mathbf{0}\text{ for all but finitely many }\mathbf{b}\in\beta\bigr\}.
[/tex]
Q:Show that card([tex]V[/tex]) = card([tex] \mathbf{k} [/tex]) card([tex]\beta [/tex])
Can anyone help?