- #1
bergausstein
- 191
- 0
i have solved these problem just want to make sure I'm on the right track.
1. Say the football team F, the basketball team B, and the track team T, decide to form a varsity club V. how many members will V have if $n\left(F\right)\,=\,25,\,n\left(B\right)\,=\,12,\,n\left(T\right)\,=\,30$ and no person belongs to two teams?
Solution. $n\left(F\right)+n\left(B\right)+n\left(T\right)\,=\,67$ there's no possibility of overlap.
a. If in problem 1, $n\left(F\cap T\right)\,=\,6$ but there are no members of B who are in F or T then what is $n\left(V\right)$?
Solution. since there are six persons who belong to T and F i will subtract 6 from 67 which is 61.
b. If in problem 1.a $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,0$ then what is $n\left(V\right)$?
Solution. there are now 10 persons that belong to two teams i will subtract these number from 67 and I will have 57.
c. if in problem 1.b $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,3$, and there are 2 three letter men that is $n\left(F\cap B\cap T\right)\,=\,2$, then what is $n\left(V\right)$?
in part C i don't understand the part where it say "there are 2 three letter men".
but this is what i Tried. there are now 13 persons who belong to two teams and 2 persons who are member of the three teams. 67-15 = 54-2 = 52.
please check if my answers were correct.
1. Say the football team F, the basketball team B, and the track team T, decide to form a varsity club V. how many members will V have if $n\left(F\right)\,=\,25,\,n\left(B\right)\,=\,12,\,n\left(T\right)\,=\,30$ and no person belongs to two teams?
Solution. $n\left(F\right)+n\left(B\right)+n\left(T\right)\,=\,67$ there's no possibility of overlap.
a. If in problem 1, $n\left(F\cap T\right)\,=\,6$ but there are no members of B who are in F or T then what is $n\left(V\right)$?
Solution. since there are six persons who belong to T and F i will subtract 6 from 67 which is 61.
b. If in problem 1.a $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,0$ then what is $n\left(V\right)$?
Solution. there are now 10 persons that belong to two teams i will subtract these number from 67 and I will have 57.
c. if in problem 1.b $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,3$, and there are 2 three letter men that is $n\left(F\cap B\cap T\right)\,=\,2$, then what is $n\left(V\right)$?
in part C i don't understand the part where it say "there are 2 three letter men".
but this is what i Tried. there are now 13 persons who belong to two teams and 2 persons who are member of the three teams. 67-15 = 54-2 = 52.
please check if my answers were correct.