- #1
frankwilson
- 3
- 0
A Carnot engine uses hot and cold reservoirs that have temperatures of 1684 and 842 K, respectively. The input heat for this engine is |QH|. The work delivered by the engine is used to operate a Carnot heat pump. The pump removes heat from the 842-K reservoir and puts it into a hot reservoir at a temperature T`. The amount of heat removed from the 842-K reservoir is also |QH|. Find the temperature T`.
|Q_c|/|Q_h|=T_c/T_h
|Q_h|=|W| + |Q_c|
I'm having trouble visualizing this problem. Are there two separate engines? Doing a little rearranging, I was able to get down to |W| = 1/2 |Q_h|. I figure that since there are no values for either heat value or work that they cancel out. I'm just not sure how to proceed. I worked it one way and got my final T` to be 1684 K, but I don't feel too confident about it. Anyone out there know where I should start or if I'm even on the right track?
|Q_c|/|Q_h|=T_c/T_h
|Q_h|=|W| + |Q_c|
I'm having trouble visualizing this problem. Are there two separate engines? Doing a little rearranging, I was able to get down to |W| = 1/2 |Q_h|. I figure that since there are no values for either heat value or work that they cancel out. I'm just not sure how to proceed. I worked it one way and got my final T` to be 1684 K, but I don't feel too confident about it. Anyone out there know where I should start or if I'm even on the right track?