- #1
ozkan12
- 149
- 0
İn some articles, I see something...
For example,
Let we define a sequence by ${x}_{n}=f{x}_{n}={f}^{n}{x}_{0}$$\left\{{x}_{n}\right\}$. To show that $\left\{{x}_{n}\right\}$ is Cauchy sequence, we suppose that $\left\{{x}_{n}\right\}$ is not a Cauchy sequence...For this reason, there exists a subsequence $\left\{{x}_{n\left(i\right)}\right\}$ of $\left\{{x}_{n}\right\}$ such that $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)\ge\varepsilon$...İn there, I didnt understant what is the ${x}_{n(i)}$ and ${x}_{n(i+1)}$...These terms are consecutive terms, that is distinction between these terms equal to 1...I didnt understand...Can you help me ? Thank you so much, best wishes
For example,
Let we define a sequence by ${x}_{n}=f{x}_{n}={f}^{n}{x}_{0}$$\left\{{x}_{n}\right\}$. To show that $\left\{{x}_{n}\right\}$ is Cauchy sequence, we suppose that $\left\{{x}_{n}\right\}$ is not a Cauchy sequence...For this reason, there exists a subsequence $\left\{{x}_{n\left(i\right)}\right\}$ of $\left\{{x}_{n}\right\}$ such that $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)\ge\varepsilon$...İn there, I didnt understant what is the ${x}_{n(i)}$ and ${x}_{n(i+1)}$...These terms are consecutive terms, that is distinction between these terms equal to 1...I didnt understand...Can you help me ? Thank you so much, best wishes