- #1
zetafunction
- 391
- 0
is this trick valid at least in the 'regularization' sense ?? for example
[tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}-a^{2}} [/tex]
then we replace thi integral above by [tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}+ie-a^{2}} [/tex] for 'e' tending to 0
using Cauchy residue theorem i get [tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}+ie-a^{2}}=(i\pi )/a [/tex]
the same trick applied to [tex] \int_{-\infty}^{\infty} \frac{dx}{x+a}= 2\pi i [/tex]
however we have obtained a complex regularization to a Real valued integral, i have seen this trick whenever dealing integrals in Quantum Physics but i want to hear the opinion of a Mathematician.
[tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}-a^{2}} [/tex]
then we replace thi integral above by [tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}+ie-a^{2}} [/tex] for 'e' tending to 0
using Cauchy residue theorem i get [tex] \int_{-\infty}^{\infty} \frac{dx}{x^{2}+ie-a^{2}}=(i\pi )/a [/tex]
the same trick applied to [tex] \int_{-\infty}^{\infty} \frac{dx}{x+a}= 2\pi i [/tex]
however we have obtained a complex regularization to a Real valued integral, i have seen this trick whenever dealing integrals in Quantum Physics but i want to hear the opinion of a Mathematician.