- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Problem: If $f$ is a holomorphic function on the strip $-1<y<1$, $x\in\mathbb{R}$ with \[\left|f(z)\right|\leq A(1+|z|)^{\eta},\quad\eta\text{ a fixed real number}\]
for all $z$ in that strip, show that for each integer $n\geq 0$ there exists $A_n\geq 0$ so that
\[|f^{(n)}(x)|\leq A_n(1+|x|)^{\eta},\quad\text{for all }x\in\mathbb{R}.\]
-----
Hint: [sp]Use Cauchy's inequality.[/sp]
-----
Problem: If $f$ is a holomorphic function on the strip $-1<y<1$, $x\in\mathbb{R}$ with \[\left|f(z)\right|\leq A(1+|z|)^{\eta},\quad\eta\text{ a fixed real number}\]
for all $z$ in that strip, show that for each integer $n\geq 0$ there exists $A_n\geq 0$ so that
\[|f^{(n)}(x)|\leq A_n(1+|x|)^{\eta},\quad\text{for all }x\in\mathbb{R}.\]
-----
Hint: [sp]Use Cauchy's inequality.[/sp]