- #1
geoffrey159
- 535
- 72
Homework Statement
Find the center of mass of an equilateral triangle with side ##a##
Homework Equations
## \vec R = \frac{1}{M} \int \vec r \ dm ##
## dm = \frac{M}{A} dx dy ##
## A = \frac{\sqrt{3}}{4}a^2 ##
The Attempt at a Solution
I set a pair of orthogonal axis ##(\vec x,\vec y)## so that one side of the triangle lies on the ##x## axis, and one vertex is at the origin.
I find the following position for the center of mass:
##R_x = \frac{1}{A} (\int_0^{\frac{a}{2}}\int_0^{\sqrt{3}x} x \ dy\ dx + \int_\frac{a}{2}^{a}\int_0^{\sqrt{3}(a-x)} x \ dy\ dx ) = \frac{a}{2}##
##R_y = \frac{1}{A} (\int_0^{\frac{a}{2}}\int_0^{\sqrt{3}x} y \ dy\ dx + \int_\frac{a}{2}^{a}\int_0^{\sqrt{3}(a-x)} y \ dy\ dx ) = \frac{a}{2\sqrt{3}}##
Do you think it is correct?