- #1
Castilla
- 241
- 0
Please help me on this. I am trying to make and exercise from an author M.D. Hatton (an english).
Let x = x(r, w) = r. cos (w)
Let y = y(r,w) = r. sen (w)
Let V = V(x,y). So V depends on r and w.
By chain rule (I put "d" for the partial derivative)
dV = dV . dx + dV. dy
-- -- -- -- --
dr dx dr dy dr
So
dV = dV . cos(w) + dV. sen(w) (A)
-- -- --
dr dx dy
And the chain rule also says that
dV = dV . dx + dV. dy
-- -- -- -- --
dw dx dw dy dw
so
dV = - r dV . sen(w) + r. dV. cos(w) (B)
-- -- --
dw dx dy
Now Hatton says: "solving these equation for dV/dx and dV/dy, we find:
dV = dV cos(w) - 1 dV . sen(w). (C)
-- -- -- . --
dx dr r dw
and
dV = dV sen(w) + 1. dV . cos(w). (D)".
-- -- -- --
dy dr r dw
I do not understand. How does (A) produces (C)? How does (B) produces (D)?
Remember that all are partial derivatives. Thanks for the help.
P. Castilla.
Let x = x(r, w) = r. cos (w)
Let y = y(r,w) = r. sen (w)
Let V = V(x,y). So V depends on r and w.
By chain rule (I put "d" for the partial derivative)
dV = dV . dx + dV. dy
-- -- -- -- --
dr dx dr dy dr
So
dV = dV . cos(w) + dV. sen(w) (A)
-- -- --
dr dx dy
And the chain rule also says that
dV = dV . dx + dV. dy
-- -- -- -- --
dw dx dw dy dw
so
dV = - r dV . sen(w) + r. dV. cos(w) (B)
-- -- --
dw dx dy
Now Hatton says: "solving these equation for dV/dx and dV/dy, we find:
dV = dV cos(w) - 1 dV . sen(w). (C)
-- -- -- . --
dx dr r dw
and
dV = dV sen(w) + 1. dV . cos(w). (D)".
-- -- -- --
dy dr r dw
I do not understand. How does (A) produces (C)? How does (B) produces (D)?
Remember that all are partial derivatives. Thanks for the help.
P. Castilla.