- #1
Poetria
- 267
- 42
- Homework Statement
- Let ##f(x,y)=x^3+y^2+x*y##
Suppose that a point is moving through the plane. At time t , the point is at ## (x(t), y(t))=(t^2, e^{t-1})##. Use linear approximation to estimate the change in f as t goes from 1 to 1.1 . In other words, approximate
- Relevant Equations
- Multivariable chain rule
##f_x=3*x^2+y##
##f_y=2*y+x##
##(3*(t^2)^2+e^{t-1})*2*t+(2*e^{t-1}+t^2)*e^{t-1}##
Well, I am not sure how to evaluate it.
I got a wrong result by multiplying by 0.1, i.e.
##((3*(t^2)^2+e^{t-1})*2*t+(2*e^{t-1}+t^2)*e^{t-1})*0.1##
I guess it is trivial but I am lost. :(
##f_y=2*y+x##
##(3*(t^2)^2+e^{t-1})*2*t+(2*e^{t-1}+t^2)*e^{t-1}##
Well, I am not sure how to evaluate it.
I got a wrong result by multiplying by 0.1, i.e.
##((3*(t^2)^2+e^{t-1})*2*t+(2*e^{t-1}+t^2)*e^{t-1})*0.1##
I guess it is trivial but I am lost. :(