MHB Challenge: Is cos(pi/60) transcendental?

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Challenge
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Here's your challenge - is $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{60} \right) } \end{align*}$ transcendental, or does it have an exact surd value? If it has an exact surd value, what is it?

Here is my solution for those of us playing at home.

It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$

Now we should note that for angles in the first quadrant

$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$

so

$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$

So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
 
Last edited:
Mathematics news on Phys.org
Looks like an actual solution will be the root of a polynomial of order 16.
That is, algebraic, but probably not a 'nice' surd value.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top