- #1
Prove It
Gold Member
MHB
- 1,465
- 24
Here's your challenge - is $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{60} \right) } \end{align*}$ transcendental, or does it have an exact surd value? If it has an exact surd value, what is it?
Here is my solution for those of us playing at home.
It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means
$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$
Now we should note that for angles in the first quadrant
$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$
so
$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$
So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
It can be shown that $\displaystyle \begin{align*} \cos{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{5} - 1}{4} \end{align*}$, $\displaystyle \begin{align*} \sin{ \left( \frac{2\,\pi}{5} \right) } = \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \end{align*}$, $\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{3} \right) } = \frac{1}{2} \end{align*}$ and $\displaystyle \begin{align*} \sin{ \left( \frac{\pi}{3} \right) } = \frac{\sqrt{3}}{2} \end{align*}$, so that means
$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{15} \right) } &= \cos{ \left( \frac{2\,\pi}{5} - \frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{2\,\pi}{5} \right) } \cos{ \left( \frac{\pi}{3} \right) } + \sin{ \left( \frac{ 2\,\pi}{5} \right) } \sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{ \left( \sqrt{5} - 1 \right) }{4} \cdot \frac{1}{2} + \frac{\sqrt{10 + 2\,\sqrt{5}}}{4} \cdot \frac{\sqrt{3}}{2} \\ &= \frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} \end{align*}$
Now we should note that for angles in the first quadrant
$\displaystyle \begin{align*} \cos{ \left( \frac{\theta}{2} \right) } \equiv \sqrt{ \frac{ \cos{ \left( \theta \right) } + 1 }{2} } \end{align*}$
so
$\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{30} \right) } &= \sqrt{ \frac{\frac{\sqrt{5} - 1 + \sqrt{30 + 6\,\sqrt{5}}}{8} + 1}{2} } \\ &= \sqrt{ \frac{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}{16} } \\ &= \frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}}}{4} \\ \\ \cos{ \left( \frac{\pi}{60} \right) } &= \sqrt{ \frac{\frac{\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} }}{4} + 1}{2} } \\ &= \sqrt{ \frac{\frac{ \sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{4}}{2} } \\ &= \sqrt{\frac{\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 4}{8}} \\ &= \sqrt{ \frac{2\,\sqrt{ \sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}} } + 8}{16} } \\ &= \frac{\sqrt{2\,\sqrt{\sqrt{5} + 7 + \sqrt{30 + 6\,\sqrt{5}}} + 8}}{4} \end{align*}$
So there you go, it has an exact surd value, disgusting as it is. As for whether it can be simplified further, I am unsure :)
Last edited: