MHB Challenge of Square Root Problem

AI Thread Summary
The discussion focuses on proving that the expression $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$ is greater than 5. The proof begins by establishing that $\sqrt{2n+1} - \sqrt{2n}$ is greater than a specific fraction, leading to an inequality involving the sum of reciprocals of square roots. By analyzing these terms, the discussion shows that the total exceeds 8, which contributes to the overall inequality. Ultimately, it concludes that the original expression is indeed greater than 5, confirming the initial claim. The mathematical reasoning is thorough and well-supported throughout the discussion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
 
Mathematics news on Phys.org
anemone said:
Show that $\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}> 5$.
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]
 
Opalg said:
[sp]
First, $\sqrt{2n+1} - \sqrt{2n} = \dfrac1{\sqrt{2n+1} + \sqrt{2n}} > \dfrac1{2\sqrt{2n+1}}.$ Therefore $$\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} > \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1.$$ Next, $$\frac1{\sqrt3} >\frac1{\sqrt4} = \frac12,$$ $$\frac1{\sqrt5} + \frac1{\sqrt7} + \frac1{\sqrt9} > \frac3{\sqrt9} = \frac33,$$ $$\frac1{\sqrt{11}} + \frac1{\sqrt{13}} + \frac1{\sqrt{15}} > \frac3{\sqrt16} = \frac34,$$ and so on, up to $$\frac1{\sqrt{83}} + \frac1{\sqrt{85}} +\frac1{\sqrt{87}} +\ldots + \frac1{\sqrt{99}} > \frac9{\sqrt{100}} = \frac9{10}.$$ Putting those all together, we get $$\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3} > \frac9{10} + \frac99 + \frac78 + \frac77 + \frac56 + \frac55 + \frac34 + \frac33 + \frac12 = 8\tfrac{103}{120} > 8.$$ Finally, $$\begin{aligned}\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\ldots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1} &> \frac12\left(\frac1{\sqrt{99}} + \frac1{\sqrt{97}} + \frac1{\sqrt{95}} + \ldots + \frac1{\sqrt3}\right) + 1 \\ &> \frac82 + 1 = 5.\end{aligned}$$
[/sp]

Very well done, Opalg! (Smile):cool:

Solution of other:

Let

$X=\sqrt{100}-\sqrt{99}+\sqrt{98}-\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}$, and

$Y+1=\sqrt{99}-\sqrt{98}+\sqrt{97}-\sqrt{96}+\cdots-\sqrt{4}+\sqrt{3}-\sqrt{2}+\sqrt{1}$.

Adding up the equations yields $X+Y=\sqrt{100}-\sqrt{2}$.

Note that from AM-GM inequality, we have the following inequalities that are true:

$100+98>2\sqrt{100}\sqrt{98}$

$4(99)>100+2\sqrt{100}\sqrt{98}+98$

$2\sqrt{99}>\sqrt{100}+\sqrt{98}$

$$\color{yellow}\bbox[5px,purple]{\sqrt{99}-\sqrt{98}>\sqrt{100}-\sqrt{99}}$$,

$$\color{yellow}\bbox[5px,green]{\sqrt{97}-\sqrt{96}>\sqrt{98}-\sqrt{97}}$$, and so on and so forth, we know $Y>X$ must hold.

Therefore, $2Y>X+Y=\sqrt{100}-\sqrt{2}$ (from $X+Y=\sqrt{100}-\sqrt{2}$), and so

$Y+1>\dfrac{\sqrt{100}-\sqrt{2}}{2}+1=5+\left(1-\dfrac{\sqrt{2}}{2}\right)>5$ and we're hence done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top