MHB Challenge problem #1 Solve 2x^2y^2−2xy+x^2+y^2−2x−2y+3=0

  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The equation 2x^2y^2−2xy+x^2+y^2−2x−2y+3=0 was presented as a challenge problem. It was determined that the equation can be rewritten as 2(xy-1)^2 + (x+y-1)^2. For this expression to equal zero, both xy must equal 1 and x+y must equal 1. However, the resulting quadratic equation λ^2 - λ + 1 = 0 has no real roots, indicating that there are no real solutions for x and y. The discussion concludes with anticipation for future challenge problems.
Olinguito
Messages
239
Reaction score
0
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$
 
Mathematics news on Phys.org
Olinguito said:
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$
Hi Olinguito, and welcome to MHB! We look forward seeing your problems.
[sp]$2x^2y^2-2xy+x^2+y^2-2x-2y+3 = 2(xy-1)^2 + (x+y-1)^2$. If that is zero then $xy=1$ and $x+y=1$. So $x$ and $y$ are the roots of $\lambda^2 - \lambda + 1 = 0$. But that equation has no real roots, so the given equation has no real solutions.[/sp]
 
Thanks Opalg – and great work! :D

I should have a second problem ready soon. :cool:
 
Olinguito said:
Hi all.

I would like to post some challenge problems from time to time. I’ll start with a simple one. :)

Find all real numbers $x,y$ satisfying the following equation:
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3=0.$$

Welcome Olinguito!
$$2x^2y^2-2xy+x^2+y^2-2x-2y+3 = (xy)^2 + (xy-1)^2+(x-1)^2+(y-1)^2=0$$
A sum of squares is 0 if and only if all individual squares are 0.
So $x=1,y=1$,and $xy=0$, which is a contradiction.
Therefore there are no solutions.
 
Thanks, I like Serena! Great work as well. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
7
Views
1K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
8
Views
1K
Replies
1
Views
1K
Back
Top