- #1
Olinguito
- 239
- 0
$n$ lights are arranged in a circle, each operated by exactly one of $n$ switches (with each switch operating exactly one light). Flicking a switch turns the light it is operating on if it is off, and off if it is on. Initially all the lights are off. The first person comes and flicks one of the swtiches, then the second person comes and flicks two of the switches, and so on, until the $n$th person comes and flicks all $n$ switches. Is it possible for all $n$ switches to be on at the end?