MHB Challenge Problem #8: 3Σ(1/(√(a^3+1))≥2Σ(√(a+b))

  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge
AI Thread Summary
The discussion revolves around proving the inequality involving positive real numbers a, b, and c, constrained by the condition a + b + c = 2. The main inequality to be proven is that 3 times the sum of the reciprocals of the square roots of (a^3 + 1) is greater than or equal to 2 times the sum of the square roots of the pairs (a+b), (b+c), and (c+a). A participant mentions correcting a typo in their solution, indicating ongoing refinement of the proof. The focus remains on demonstrating the validity of the mathematical statement through appropriate methods. The conversation highlights the importance of clarity and accuracy in mathematical proofs.
Olinguito
Messages
239
Reaction score
0
Let $a,b,c$ be positive real numbers such that $a+b+c=2$. Prove that
$$3\left(\frac1{\sqrt{a^3+1}}+\frac1{\sqrt{b^3+1}}+\frac1{\sqrt{c^3+1}}\right)\ \geqslant\ 2\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right).$$
 
Mathematics news on Phys.org
Solution:

We have
$$\frac3{a^3+1}\ =\ \frac{2-a}{a^2-a+1}+\frac1{a+1}\ \geqslant\ 2\sqrt{\dfrac{2-a}{a^3+1}}$$
putting into partial fractions and applying AM–GM (noting that all terms are positive).

Hence
$$\frac3{\sqrt{a^3+1}}\ \geqslant\ 2\sqrt{2-a}\ =\ 2\sqrt{b+c}.$$
Similarly
$$\frac3{\sqrt{b^3+1}}\ \geqslant\ 2\sqrt{c+a}$$
and
$$\frac3{\sqrt{c^3+1}}\ \geqslant\ 2\sqrt{a+b};$$
summing gives the required inequality.
 
Last edited:
Olinguito said:
Solution:

We have
$$\frac3{a^3+1}\ =\ \frac{2-a}{a^2-a+1}+\frac1{a+1}\ \leqslant\ 2\sqrt{\dfrac{2-a}{a^3+1}}$$
putting into partial fractions and applying AM–GM (noting that all terms are positive).

Hence
$$\frac3{\sqrt{a^3+1}}\ \leqslant\ 2\sqrt{2-a}\ =\ 2\sqrt{b+c}.$$
Similarly
$$\frac3{\sqrt{b^3+1}}\ \leqslant\ 2\sqrt{c+a}$$
and
$$\frac3{\sqrt{c^3+1}}\ \leqslant\ 2\sqrt{a+b};$$
summing gives the required inequality.


the question says it is $>=$ but answer says it is $<=$
 
I’ve fixed the typo in my solution.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top