- #1
Olinguito
- 239
- 0
Let $S_n$ be the group of all permutations of the set $\{1,\ldots,n\}$. Determine whether the following assertions are true or false.
1. For each $\pi\in S_n$,
$$\sum_{i=1}^n\,(\pi(i)-i)\ =\ 0.$$
2. If
$$\sigma_\pi\ =\ \sum_{i=1}^n\,\left|\pi(i)-i\right|$$
for each $\pi\in S_n$, then $\sigma_\pi$ is an even number.
Bonus challenge: Find $\displaystyle\max_{\pi\in S_n}\,\sigma_\pi$.
1. For each $\pi\in S_n$,
$$\sum_{i=1}^n\,(\pi(i)-i)\ =\ 0.$$
2. If
$$\sigma_\pi\ =\ \sum_{i=1}^n\,\left|\pi(i)-i\right|$$
for each $\pi\in S_n$, then $\sigma_\pi$ is an even number.
Bonus challenge: Find $\displaystyle\max_{\pi\in S_n}\,\sigma_\pi$.