Change in temperature in the Gay-Loussac-Joule experiment

In summary, Gay-Loussac and Joule found that the internal energy of a gas does not change with temperature when the two gases are in contact, as long as they are of the same ideal gas.
  • #1
Emspak
243
1

Homework Statement


Consider the apparatus from the Gay-Loussac-Joule experiment. You have 2 containers of gas, with a valve between them. The volume of each container is V. Each vessel contains nA and nB moles of gas. Their temperatures (T1) are initially the same.

When the valve is opened and the gases are allowed to mix, find an expression that shows the change in temperature.

Homework Equations



We will assume a Van der Waals gas with an equation of state as follows:
##nRT = \left(P+\frac{a}{V^2}\right)(V-b)##

and the internal energy of both gases can be described by:

##u = c_VT - \frac{a}{V} + u_0##

The Attempt at a Solution



OK, I assumed we need the conservation of energy, so that there will be a ##u_i## (initial energy) and a ##u_f## (final).

I figured at first I should just add the energies of the two gases as follows:

gas 1: ##u = c_vT - \frac{a}{V} + u_0##
gas 2: ##u = c_vT - \frac{a}{V} + u_0##

and the total energy has to be the same as the van der Waals gas in a space 2x the volume, so ##u_f = c_vT - \frac{a}{2V} + u_0##.

I also know that the equation of state for the combined gas should be

##(n_A + n_B)RT = \left(P+\frac{a}{V^2}\right)(V-b)##

and fro there I should get a reasonable expression for the change in temperature.

The problem is I am not quite sure how to make the connection. My first attempt at finding a delta T was this:

##2u_i = 2c_vT_1 - 2\frac{a}{V} + 2u_0 = u_f = c_vT_2 - \frac{a}{2V} + u_0##
##2c_vT_1 - c_vT_2 = 2\frac{a}{V} - \frac{a}{2V} - u_0##
##(2T_1 - T_2)c_v = \frac{a}{2V} - u_0##
##(2T_1 - T_2) = \frac{a}{2Vc_v} - u_0##

But i am sensing that isn't right because I am not incorporating ##n_A## and ##n_B##.

Anyhow, I feel like I am almost getting i but there is some crucial step I am missing.

EDIT: I used twice the initial energy to account for there being two volumes of gas, and wasn't sure if I should change the a constants (it didn't seem like it given the parameters of the problem).

ANy help is much appreciated. Thanks.
 
Physics news on Phys.org
  • #2
Initial total energies left and right are not equal: na must be different from nb (otherwise opening the valve doesn't do anything!). So starting with 2u1 is not a good idea.

Write an energy balance in full, using symbols for what you don't know. Then go looking for things that are the same, things that are related by an equation, etc.
 
  • #3
OK, looked at that way,

gas 1: ##u_1 = c_vT_1 - \frac{a}{n_Av_1} + u_0##
gas 2: ##u_2 = c_vT_1 - \frac{a'}{n_Bv_2} + u_0'##

T will be the same, I made ##a## and ##a'## differ because they are two different gases.

##u_1 + u_2 = u_f## because the energy is conserved. ##V = n_Av_1## and ##V = n_Bv_2## because the ##v## is the volume of 1 mole and ##V## is the same (they are in equal-sized vessels). So ##n_Av_1 = n_Bv_2##.

If I add the two I end up with ##u_1 + u_2 = c_vT_1 - \frac{a}{n_Av_1} + u_0+ c_vT_1 - \frac{a'}{n_Bv_2} + u_0'## which gets me
##2c_vT_1 - \frac{a}{n_Av_1} - \frac{a'}{n_Bv_2} + u_0' + u_0##

which should equal the energy when I am done letting the gases mix, which is

##u_f = c_vT_2 - \frac{a''}{(n_Av_1+n_bv_2)}+ u_0' + u_0##

But I wasnt sure if I was constructing the ##u_f## correctly here.

EDIT:
Putting it all together: ##c_vT_2 - \frac{a''}{(n_Av_1+n_bv_2)}+ u_0' + u_0 = 2c_vT_1 - \frac{a}{n_Av_1} - \frac{a'}{n_Bv_2} + u_0' + u_0##

##c_vT_2 - \frac{a''}{(n_Av_1+n_bv_2)} = 2c_vT_1 - \frac{a}{n_Av_1} - \frac{a'}{n_Bv_2}##
##c_vT_2 - 2c_vT_1 = \frac{a''}{(n_Av_1+n_bv_2)} - \frac{a}{n_Av_1} - \frac{a'}{n_Bv_2}##

am I getting there..?
 
Last edited:
  • #4
I see, you interpret "Each vessel contains nA and nB moles of gas" as nA moles of gas A on the left and nB moles of gas B on the right. This means you are after an internal energy of mixing or something. .

Sorry to have confused you in that direction with my total energy vs energy per mole.

Gay-Lusssac and Joule were just letting one gas expand adiabatically (against near-vacuum) to study if the internal energy of such a gas depends on the temperature AND the volume, or on the temperature only (ideal gas: temperature only). Within their error margins they found ideal gas behaviour, an indication that the Joule coefficient ##\eta \equiv \left ( {dT\over dv} \right )_u ## is very small.

You'd better stick to different numbers of moles of the same gas in the two volumes to avoid two a's, two cv's (!), two u0 etc.

You also want to decide on the units of a, cv and u0 because now you end up with unwanted factors of two and a u0.

Usually we take upper case for extensive properties (total energy U) and lower case for intensive properties (energy per mole u) if the distinction must be made. For e.g. temperature and pressure that isn't necessary.

Then: you don't need van der Waals any more, because that is already worked out in the expression for u.

With all that, the exercise is a piece of cake: write out ## n_A u_A + n_B u_B = (n_A+n_B) u_f##, work around to an expression for ## T_1 - T_2 ## and there is the Joule coefficient !
 
  • #5
According to the exercise, there are two different gases tho. It says specifically that you are allowing them to mix. Does the same ting apply then? The answer we are "supposed" to get looks like this:

[tex]\Delta T = \frac{(2n_An_B - n^2_A - n^2_B) a}{2c_vV(n_A+n_B) }[/tex]

which would say to me that we are supposed to treat a as equal between the two gases, as well as ##c_v##.
 
  • #6
Ah, there is an answer that we have to reproduce... Funny answer: one a, one cv, u0 gone as well. Numerator is ##-(n_A - n_B)^2##. Wonder how the difference comes in...
Could it be that there is something like ##u = c_VT - \frac{a}{V} + u_0## should have been ##u = c_VT - \frac{a}{v} + u_0## ?
 

Related to Change in temperature in the Gay-Loussac-Joule experiment

What is the Gay-Lussac-Joule experiment?

The Gay-Lussac-Joule experiment is a scientific experiment that measures the relationship between temperature and pressure of a gas when volume is held constant. It was first performed by scientists Joseph-Louis Gay-Lussac and James Prescott Joule in the early 19th century.

How does the Gay-Lussac-Joule experiment work?

The experiment involves using a sealed container with a fixed volume of gas. The gas is then heated or cooled, causing the temperature to change. The pressure of the gas is measured before and after the temperature change, and the data is used to calculate the relationship between temperature and pressure.

What is the purpose of the Gay-Lussac-Joule experiment?

The purpose of the experiment is to demonstrate the direct relationship between temperature and pressure of a gas when volume is held constant. This relationship is known as Gay-Lussac's Law, which states that as temperature increases, pressure also increases, and vice versa.

How is temperature measured in the Gay-Lussac-Joule experiment?

Temperature is typically measured using a thermometer, which is inserted into the sealed container of gas. The thermometer is calibrated in a standard unit of temperature, such as Celsius or Fahrenheit, and the change in temperature is recorded before and after the experiment.

What factors can affect the results of the Gay-Lussac-Joule experiment?

The results of the experiment can be affected by factors such as the type of gas being used, the volume of the container, and the accuracy of the equipment used to measure temperature and pressure. It is important to control these variables in order to obtain accurate and reliable results.

Similar threads

  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
32
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
867
  • Introductory Physics Homework Help
Replies
5
Views
726
  • Introductory Physics Homework Help
Replies
11
Views
467
  • Introductory Physics Homework Help
Replies
4
Views
857
  • Introductory Physics Homework Help
Replies
5
Views
3K
  • Introductory Physics Homework Help
Replies
17
Views
2K
  • Introductory Physics Homework Help
Replies
10
Views
1K
Back
Top