- #1
Guest2
- 193
- 0
Consider the following set of vectors in $\mathbb{R}^3:$ $u_0 = (1,2,0),~ u_1 = (1,2,1), ~u_2 = (2,3,0), ~u_3 = (4,6,1)$ Explain why each of the two subsets $B_0 = \left\{u_0, u_2,u_3\right\}$ and $B_1 = \left\{u_1, u_2, u_3\right\}$ forms a basis of $\mathbb{R}^3$. If we write $[\mathbf{x}]_0$ and $[\mathbf{x}]_1$ for the coordinates of the vector $\mathbf{x}$ in terms of these two basis, find the precise transition matrix which inter-relates these two sets of coordinates. If $\mathbf{x} = 4\mathbf{e}_1+4\mathbf{e}_3$, what are $\mathbf [\mathbf{x}]_0$ and $[\mathbf{x}]_1$?
Writing the vectors of the subset $B_0$ as the columns of a matrix we have:
$\mathbf{A}_0: = \begin{pmatrix}
1&2&4 \\
2&3&6 \\
0&0 &1
\end{pmatrix} \to \begin{pmatrix}
1&2&4 \\
0&-1&-4 \\
0&0 &1
\end{pmatrix} \implies \det(\mathbf{A}_0) =(1)(-1)(1) = -1 $
As the columns of a $3 \times 3$ matrix whose determinant is non-zero, these vectors form a basis for $\mathbb{R}^3.$
Similarly, writing the vectors of the subset $B_1$ as the columns of a matrix we have:
$\mathbf{A}_1: = \begin{pmatrix}
1&1&2 \\
3&2&6 \\
0&1 &1
\end{pmatrix} \to \begin{pmatrix}
1&1&2 \\
0&-1&0 \\
0&0 &1
\end{pmatrix} \implies \det(\mathbf{A}_1) =(1)(-1)(1) = -1 $
As the columns of a $3 \times 3$ matrix whose determinant is non-zero, these vectors form a basis for $\mathbb{R}^3.$
I'm stuck changing the basis. I think one transition matrix is:
$\mathbf{M} = \begin{pmatrix} 3&1&6 \\ -1&0&-4 \\ 0&0 &1 \end{pmatrix}$
This maps $[x]_1 \mapsto \mathbf{M} [x]_0$; and the one below maps $[x]_0 \mapsto \mathbf{M}' [x]_1$
$\mathbf{M}' = \begin{pmatrix} 0&-1&-4 \\ 1&3&6 \\ 0&0 &1 \end{pmatrix}$
I know I'm supposed to multiply by $[4,0,4]^{T}$ at some point, but when can I do that if I'm always in non-standard basis?
Writing the vectors of the subset $B_0$ as the columns of a matrix we have:
$\mathbf{A}_0: = \begin{pmatrix}
1&2&4 \\
2&3&6 \\
0&0 &1
\end{pmatrix} \to \begin{pmatrix}
1&2&4 \\
0&-1&-4 \\
0&0 &1
\end{pmatrix} \implies \det(\mathbf{A}_0) =(1)(-1)(1) = -1 $
As the columns of a $3 \times 3$ matrix whose determinant is non-zero, these vectors form a basis for $\mathbb{R}^3.$
Similarly, writing the vectors of the subset $B_1$ as the columns of a matrix we have:
$\mathbf{A}_1: = \begin{pmatrix}
1&1&2 \\
3&2&6 \\
0&1 &1
\end{pmatrix} \to \begin{pmatrix}
1&1&2 \\
0&-1&0 \\
0&0 &1
\end{pmatrix} \implies \det(\mathbf{A}_1) =(1)(-1)(1) = -1 $
As the columns of a $3 \times 3$ matrix whose determinant is non-zero, these vectors form a basis for $\mathbb{R}^3.$
I'm stuck changing the basis. I think one transition matrix is:
$\mathbf{M} = \begin{pmatrix} 3&1&6 \\ -1&0&-4 \\ 0&0 &1 \end{pmatrix}$
This maps $[x]_1 \mapsto \mathbf{M} [x]_0$; and the one below maps $[x]_0 \mapsto \mathbf{M}' [x]_1$
$\mathbf{M}' = \begin{pmatrix} 0&-1&-4 \\ 1&3&6 \\ 0&0 &1 \end{pmatrix}$
I know I'm supposed to multiply by $[4,0,4]^{T}$ at some point, but when can I do that if I'm always in non-standard basis?