- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Smile)
We have the differential equation $y''+ \frac{p}{x} y'+ \frac{q}{x^2}y=0, x>0$ and we set $z=\log x$.
Then $y'=\frac{dy}{dx}=\frac{dy}{dz} \frac{dz}{dx}=\frac{1}{x} \frac{dy}{dz}$
$y''=\frac{d^2y}{dx^2}=\frac{d}{dx}\left( \frac{dy}{dx} \right)=\frac{d}{dx}\left( \frac{1}{x} \frac{dy}{dz} \right)=-\frac{1}{x^2}\frac{dy}{dx}+\frac{1}{x} \frac{d}{dx}\left( \frac{dy}{dz}\right)$
How can we find $\frac{d}{dx}\left( \frac{dy}{dz}\right)$?
We have the differential equation $y''+ \frac{p}{x} y'+ \frac{q}{x^2}y=0, x>0$ and we set $z=\log x$.
Then $y'=\frac{dy}{dx}=\frac{dy}{dz} \frac{dz}{dx}=\frac{1}{x} \frac{dy}{dz}$
$y''=\frac{d^2y}{dx^2}=\frac{d}{dx}\left( \frac{dy}{dx} \right)=\frac{d}{dx}\left( \frac{1}{x} \frac{dy}{dz} \right)=-\frac{1}{x^2}\frac{dy}{dx}+\frac{1}{x} \frac{d}{dx}\left( \frac{dy}{dz}\right)$
How can we find $\frac{d}{dx}\left( \frac{dy}{dz}\right)$?
Last edited: