- #1
Crush1986
- 207
- 10
Homework Statement
Determine the spherical harmonics and the eigenvalues of [tex] \vec{\hat{L}}^2 [/tex] by solving the eigenvalue equation [tex] \vec{\hat{L}}^2 |\lambda, m \rangle [/tex] in position space,
[tex] [\frac{1}{sin \theta} \frac{\partial}{\partial \theta} ( sin \theta \frac{\partial}{\partial \theta} ) + \frac{1}{sin^2 \theta} \frac{\partial^2}{\partial \phi^2}] \Theta_{\lambda,m}(\theta) e^{im\phi} [/tex]
restrict your attention to the m = 0 case. Rewrite the equation in terms of u = cos \theta and show that it becomes
[tex] (1-u^2) \frac{d^2 \Theta_{\lambda, 0}}{du^2}-2u \frac{d \Theta_{\lambda,m}}{du} + \lambda \Theta_{\lambda,0} = 0 [/tex]
Homework Equations
distributing the [tex] \frac{\partial}{\partial \theta} [/tex] and recognizing that the double phi derivative turns to zero I am working with the equation [tex] -[cot \theta \frac{\partial}{\partial \theta} + \frac{\partial^2}{\partial \theta^2}] \Theta_{\lambda,0} = \lambda \Theta_{\lambda,0} [/tex]
so, using [tex] u = cos \theta [/tex] I get that [tex] du = -sin \theta d \theta [/tex], which in turn gives me that [tex] \frac{d}{d \theta} = - sin \theta \frac{d}{du} [/tex]
So I'm pretty sure I'm messing up when I am substituting in for [tex] \frac{d^2}{d^2 \theta} = -sin \theta \frac{d}{du} (-sin \theta \frac{d}{du}) [/tex]
I'm then saying [tex] -sin \theta = \frac{du}{d \theta} [/tex] then using the chain rule I get [tex] \frac{d^2}{d^2 \theta} = -sin [ \frac {d}{d \theta} \frac{d}{du} + \frac{du}{d \theta} \frac {d^2}{du^2}] = -sin \theta [-sin \theta \frac{d^2}{du^2}-sin \theta \frac{d^2}{du^2}] = 2 sin^2 \theta \frac{d^2}{du^2}
[/tex]
The Attempt at a Solution
I'd appreciate any help. When i put this all together I'm getting
[tex] 2(1-u^2)\frac{d^2 \Theta_{\lambda,0}}{du^2} - u \frac{d \Theta_{\lambda,0}}{du} + \lambda \Theta_{\lambda,0}=0 [/tex]
I'm pretty sure it's just me doing something stupid while trying to find what the second derivative with respect to theta equals after the change of variable.
Last edited: