- #1
TimeRip496
- 254
- 5
Homework Statement
The stability of a spinning body may be explored by using equation (3.40), with no
torque components present. It will be assumed here that the spin is about the z -axis and
has a rate ωZ = S.
Homework Equations
$$I_{xx}\dot{ω} - (I_{yy}-I_{zz})Sω_y = 0$$
$$I_{yy}\dot{y} - (I_{zz}-I_{xx})Sω_x = 0$$
These are linear equations whose characteristic equation in terms of the Laplace
operator, s, is
$$s^2 + (1-\frac{I_{zz}}{I_{xx}}) (1-\frac{I_{zz}}{I_{yy}}) S^2 = 0$$
The Attempt at a Solution
I have no idea what the variable is and thus I can't really apply the Laplace operator. Laplace operator is double differentiating the function but in this case I don't know what the function is and thus I have no way to solve this.
Source: https://books.google.com.sg/books?i...tion in terms of the Laplace operator&f=false