- #1
ognik
- 643
- 2
$ \left( \vec{r} - \vec{a} \right). \vec{r} = 0 $ Please check this:
Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$
This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?
Then, $ r^2 - a.r = 0 $, then $ \left( r - \frac{a}{2} \right)^2 - \left(\frac{a}{2}\right)^2 = 0 $, then
$ \left( x - \frac{a}{2}\right)^2 + \left(y - \frac{a}{2}\right)^2 + \left( z - \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2$
This is a circle radius $ \frac{a}{2} $, centred at $\left(\frac{a}{2} , \frac{a}{2} , \frac{a}{2} \right) $?