- #1
Sux
- 4
- 0
Homework Statement
Hello, I can't find any way to prove if this funtion is or isn't differentiable in if [tex](x,y)=(0,0)[/tex] :
[tex]{f(x,y)=\displaystyle\frac{x^{3}}{x^{2}+y^{2}}}[/tex] if [tex](x,y) \neq(0,0)[/tex]
[tex]f(x,y)=0[/tex] if [tex](x,y)=(0,0)[/tex]
The Attempt at a Solution
Partial derivatives don't exist in (0,0), so i have calculate definition of differentiability, and i get:
[tex]\displaystyle\lim_{x,y \to{0,0}}{} \displaystyle\frac{x^{3}}{(x^{2}+y^{2})^{3/2}}[/tex]
Which limit doesn't exit, so it is not differentiable in (0,0).
Is this right?
Thanks!