- #1
Fabio010
- 85
- 0
The question is to check where the following complex function is differentiable.
[tex]w=z \left| z\right|[/tex]
[tex]w=\sqrt{x^2+y^2} (x+i y)[/tex]
[tex]u = x\sqrt{x^2+y^2}[/tex]
[tex]v = y\sqrt{x^2+y^2}[/tex]
Using the Cauchy Riemann equations
[tex]\frac{\partial }{\partial x}u=\frac{\partial }{\partial y}v[/tex]
[tex]\frac{\partial }{\partial y}u=-\frac{\partial }{\partial x}v[/tex]
my results:
[tex]\frac{x^2}{\sqrt{x^2+y^2}}=\frac{y^2}{\sqrt{x^2+y^2}}[/tex]
[tex]\frac{x y}{\sqrt{x^2+y^2}}=0[/tex]
solutions says that it's differentiable at (0,0). But doesn't it blow at (0,0)?
[tex]w=z \left| z\right|[/tex]
[tex]w=\sqrt{x^2+y^2} (x+i y)[/tex]
[tex]u = x\sqrt{x^2+y^2}[/tex]
[tex]v = y\sqrt{x^2+y^2}[/tex]
Using the Cauchy Riemann equations
[tex]\frac{\partial }{\partial x}u=\frac{\partial }{\partial y}v[/tex]
[tex]\frac{\partial }{\partial y}u=-\frac{\partial }{\partial x}v[/tex]
my results:
[tex]\frac{x^2}{\sqrt{x^2+y^2}}=\frac{y^2}{\sqrt{x^2+y^2}}[/tex]
[tex]\frac{x y}{\sqrt{x^2+y^2}}=0[/tex]
solutions says that it's differentiable at (0,0). But doesn't it blow at (0,0)?