- #1
Samuelb88
- 162
- 0
Homework Statement
Let [tex]S_n[/tex] and [tex]Q_n[/tex] be sequences and suppose [tex] \lim_{n\rightarrow +\infty} {S_n} = A[/tex] and [tex]\lim_{n\rightarrow +\infty} {Q_n} = B[/tex]. Then [tex] \lim_{n\rightarrow +\infty} {(S_n + Q_n)} = A+B[/tex].
The Attempt at a Solution
*I am using "E" in place of ε.
Proof: I want to show for every E > 0 there is an N such that whenever n>N, [tex]|S_n + Q_n - (A+B)|
< E[/tex].
Suppose [tex] \lim_{n\rightarrow +\infty} {S_n} = A[/tex] and [tex]\lim_{n\rightarrow +\infty} {Q_n} = B[/tex]. Then for every [tex]E_1 > 0[/tex], there are numbers I,J such that whenever:
1. [tex] i > I, |S_i - A| < E_1[/tex]
2. [tex] j > J, |Q_j - B| < E_1[/tex]
Take N=max(I,J) to ensure both the inequalities 1. and 2. will hold. Then by the triangle inequality
[tex]|S_n - A + Q_n -B| <= |S_n - A| + |Q_n - B| < 2E_1[/tex]
Let [tex]E_1 = \frac{1}{2} E[/tex]. Then
[tex]|S_n - A + Q_n -B| < E [/tex] as required. Q.E.D.
Look good?