- #1
ognik
- 643
- 2
Functions u, v satisfy the S-L eqtn $ [py']'+\lambda wy=0 $. u,v satisfy boundary conditions that lead to orthogonality. Prove that for appropriate boundary conditions, u' and v' are orthogonal with p as weighting factor.
I'm sure I need to use the orthogonality integral $ \langle u'|v' \rangle_p $ and show $ \int_{a}^{b}u'^*v'p \,dx=0 $, then u',v' orthogonal and p is the weighting factor
By parts, and taking u,v real for now to save writing the *, leaving off the limits and dx for brevity, $ \int_{a}^{b}u'v'p \,dx = v'pu-\int u(v'p)' $
This is promising because from boundary conditions the 1st term = 0 for both limits.
$ \int u(v'p)' = uv'p - \int v'pu' $ and again the 1st term vanishes from boundary conditions.
This leaves me with $ \int_{a}^{b}u'v'p \,dx = - \int_{a}^{b}u'v'p \,dx $, so that $ \int_{a}^{b}u'v'p \,dx $ must = 0. (u,v complex makes no difference to the above.)
Does this all work OK please?
I'm sure I need to use the orthogonality integral $ \langle u'|v' \rangle_p $ and show $ \int_{a}^{b}u'^*v'p \,dx=0 $, then u',v' orthogonal and p is the weighting factor
By parts, and taking u,v real for now to save writing the *, leaving off the limits and dx for brevity, $ \int_{a}^{b}u'v'p \,dx = v'pu-\int u(v'p)' $
This is promising because from boundary conditions the 1st term = 0 for both limits.
$ \int u(v'p)' = uv'p - \int v'pu' $ and again the 1st term vanishes from boundary conditions.
This leaves me with $ \int_{a}^{b}u'v'p \,dx = - \int_{a}^{b}u'v'p \,dx $, so that $ \int_{a}^{b}u'v'p \,dx $ must = 0. (u,v complex makes no difference to the above.)
Does this all work OK please?