- #1
Lanza52
- 63
- 0
[SOLVED] Takehome Test Check
Have a take home test that is due tomorrow at noon. Got 3 of the 4 done and I thought that it would be a good idea to have better mathematicians then myself check it for me. So, if anybody feels like doing the work;
1. Integration by Parts
[tex]\int\sin(log_{2}x)dx[/tex]
[tex]u = \sin(log_{2}x)[/tex]
[tex]du = \frac{\cos(log_{2}x)}{xlog2}dx[/tex]
dv = dx, v = x
[tex]x\sin(log_{2}x)-\int\frac{x\cos(log_{2}x)}{xlog2}[/tex]
[tex]x\sin(log_{2}x)-\frac{1}{log2}\int\cos(log_{2}x)dx[/tex]
Then do it again.
[tex]u = \cos(log_{2}x)[/tex]
[tex]du = \frac{-\sin(log_{2}x)}{xlog2}dx[/tex]
dv = dx, v = x
[tex]x\cos(log_{2}x)+\int\frac{x\sin(log_{2}x)}{xlog2}[/tex]
[tex]x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx[/tex]
Now put it all together.
[tex]x\sin(log_{2}x)-\frac{1}{log2}(x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx)=\int\sin(log_{2}x)dx[/tex]
[tex]x\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x)=\frac{log^{2}2+1}{log^{2}2}\int\sin(log_{2}x)dx[/tex]
Answer:
[tex]\frac{log^{2}2(\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x))}{log^{2}2+1}=\int\sin(log_{2}x)dx[/tex]
Have a take home test that is due tomorrow at noon. Got 3 of the 4 done and I thought that it would be a good idea to have better mathematicians then myself check it for me. So, if anybody feels like doing the work;
1. Integration by Parts
[tex]\int\sin(log_{2}x)dx[/tex]
[tex]u = \sin(log_{2}x)[/tex]
[tex]du = \frac{\cos(log_{2}x)}{xlog2}dx[/tex]
dv = dx, v = x
[tex]x\sin(log_{2}x)-\int\frac{x\cos(log_{2}x)}{xlog2}[/tex]
[tex]x\sin(log_{2}x)-\frac{1}{log2}\int\cos(log_{2}x)dx[/tex]
Then do it again.
[tex]u = \cos(log_{2}x)[/tex]
[tex]du = \frac{-\sin(log_{2}x)}{xlog2}dx[/tex]
dv = dx, v = x
[tex]x\cos(log_{2}x)+\int\frac{x\sin(log_{2}x)}{xlog2}[/tex]
[tex]x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx[/tex]
Now put it all together.
[tex]x\sin(log_{2}x)-\frac{1}{log2}(x\cos(log_{2}x)+\frac{1}{log2}\int\sin(log_{2}x)dx)=\int\sin(log_{2}x)dx[/tex]
[tex]x\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x)=\frac{log^{2}2+1}{log^{2}2}\int\sin(log_{2}x)dx[/tex]
Answer:
[tex]\frac{log^{2}2(\sin(log_{2}x)-\frac{1}{log2}x\cos(log_{2}x))}{log^{2}2+1}=\int\sin(log_{2}x)dx[/tex]
Last edited: