- #1
JD_PM
- 1,131
- 158
- Homework Statement
- Given
$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)$$
a) What is the range of ##\lambda## such that ##Z(\lambda)## converges?
b) Find a compact expression for the series expansion of ##Z(\lambda)## for small ##\lambda## of the form
$$Z_N(\lambda) = \sum_{n=0}^N c_n \lambda^n$$
Is your series convergent? What is the radius of convergence?
c) Find a series expansion for ##Z(\lambda)## for ##\lambda >> 1## of the form
$$\hat Z_N(\lambda) = \sum_{n=0}^N d_n \lambda^{\left(2n+1 \right)/4}$$
Is this series convergent? For what value of ##N## will you obtain a value for ##\hat Z_N(0,1)## which is close to the exact value ##Z(0,1)##.
- Relevant Equations
- N/A
a) First off, I computed the integral
\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}\right) \exp\left( -\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \sqrt{2\pi} \left( \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right) \right) = \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right)
\end{align*}
So I would say that the range of convergence is ##\lambda \in (0, +\infty]##, am I right?
For b) and c) I am quite confused. I have been trying to naively apply the series expansion for the exponential i.e.
$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty}\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)^n / n! \tag{*}$$
But I do not see how (*) could lead to get b) and c) expressions; could you please give me a hint
Thank you
\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}\right) \exp\left( -\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \sqrt{2\pi} \left( \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right) \right) = \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right)
\end{align*}
So I would say that the range of convergence is ##\lambda \in (0, +\infty]##, am I right?
For b) and c) I am quite confused. I have been trying to naively apply the series expansion for the exponential i.e.
$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty}\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)^n / n! \tag{*}$$
But I do not see how (*) could lead to get b) and c) expressions; could you please give me a hint
Thank you