I Checking if a stationary point is a minimum using Lagrangian Mechanics

AI Thread Summary
To determine if a stationary point is a minimum in Lagrangian mechanics, one can use the second variation, which is analogous to the second derivative test in standard calculus. The discussion highlights a practice question where the stationary point of an integral needs to be verified as a minimum, with the initial approach involving a second derivative test on the function f(x'). The poster questions whether the condition S(a) > S_actual can be applied to I(a) in the context of Lagrangian mechanics. They express confusion about the appropriate methods for analyzing minima in this framework, indicating a need for clarification on the topic. Understanding the second variation is crucial for correctly identifying minima in Lagrangian problems.
beans123
Messages
5
Reaction score
0
I'm having trouble understanding how to find out whether or not a stationary point is a minimum and I'm hoping for some clarification. In my class, we were shown that, using Euler's equation, the straight-line path:
Screenshot 2023-02-05 18.16.34.png

with constants a and b results in a stationary point of the integral:
Screenshot 2023-02-05 18.16.47.png

A certain practice question then asks to show that the stationary point corresponds to a minimum. My only attempt so far was performing a simple second derivative test on the function f(x') which turned out to be successful. However, I'm wondering if this is the only way to solve such a problem. I know that a minimum is satisfied if S(a) > S_actual, but can that same idea be mapped onto I(a), that is, is a minimum achieved if I(a) > I_actual (if that even makes sense)? I'm very new to Lagrangian mechanics and find it kind of overwhelming so forgive me if this is a silly question. It just seems that I took the calculus way of solving this when that may not be the ideal method for a class based on Lagrangian mechanics/. I appreciate any help/advice!
 
Physics news on Phys.org
Try googling "2nd variation in Lagrangian mechanics". (This is analog of 2nd derivatives in ordinary calculus.)
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top