Checking if a stationary point is a minimum using Lagrangian Mechanics

In summary, the conversation discusses how to determine if a stationary point is a minimum using Euler's equation and second derivative tests. It also mentions the concept of 2nd variation in Lagrangian mechanics as an alternative method of solving the problem. The person is new to Lagrangian mechanics and is seeking clarification and advice on the topic.
  • #1
beans123
5
0
I'm having trouble understanding how to find out whether or not a stationary point is a minimum and I'm hoping for some clarification. In my class, we were shown that, using Euler's equation, the straight-line path:
Screenshot 2023-02-05 18.16.34.png

with constants a and b results in a stationary point of the integral:
Screenshot 2023-02-05 18.16.47.png

A certain practice question then asks to show that the stationary point corresponds to a minimum. My only attempt so far was performing a simple second derivative test on the function f(x') which turned out to be successful. However, I'm wondering if this is the only way to solve such a problem. I know that a minimum is satisfied if S(a) > S_actual, but can that same idea be mapped onto I(a), that is, is a minimum achieved if I(a) > I_actual (if that even makes sense)? I'm very new to Lagrangian mechanics and find it kind of overwhelming so forgive me if this is a silly question. It just seems that I took the calculus way of solving this when that may not be the ideal method for a class based on Lagrangian mechanics/. I appreciate any help/advice!
 
Physics news on Phys.org
  • #2
Try googling "2nd variation in Lagrangian mechanics". (This is analog of 2nd derivatives in ordinary calculus.)
 
  • Like
Likes vanhees71

Similar threads

Replies
2
Views
232
Replies
23
Views
2K
Replies
25
Views
1K
Replies
11
Views
1K
Replies
3
Views
1K
  • Classical Physics
Replies
5
Views
1K
  • Classical Physics
Replies
13
Views
2K
Replies
5
Views
908
  • Mechanics
Replies
2
Views
572
Back
Top