- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
Let $\alpha\in \mathbb{R}$. We define the following maps:
(a) For $p\in \mathbb{R}^2$ let $\delta_{p,\alpha}=\tau_p\circ \delta_{\alpha}\circ\tau_p^{-1}$.
(b) For $p\in \mathbb{R}f_{\alpha}$ let $\sigma_{p,\alpha}=\tau_p\circ \sigma_{\alpha}\circ\tau_p^{-1}$.
(c) For $p\in \mathbb{R}f_{\alpha}$, $q\in \mathbb{R}e_{\alpha}$ let $\gamma_{q,p,\alpha}=\tau_q\circ \sigma_{p,\alpha}$.
Let $\beta\in \text{Isom}(\mathbb{R}^2)$. Then one of the following statements is true.
(i) $\beta=\text{id}$
(ii) $\beta=r_v$, $0\neq v\in \mathbb{R}^2$.
(iii) $\beta=\delta_{p,\alpha}$,$0<\alpha<2\pi$
(iv) $\beta=\sigma_{p,\alpha}$, $\alpha\in \mathbb{R}$, $p\in \mathbb{R}f_{\alpha}$
(v) $\beta=\gamma_{q,p,\alpha}$, $\alpha\in \mathbb{R}$, $p\in \mathbb{R}f_{\alpha}$ , $q\in \mathbb{R}e_{\alpha}$ , $0\neq q$
So we have to check which of these cases for $\beta$ we have an isometry, or not?
The identity function is in $\text{Isom}(\mathbb{R}^2)$, isn't it?
For the other ones do we have to checkif these maps are bijective? :unsure:
Let $\alpha\in \mathbb{R}$. We define the following maps:
(a) For $p\in \mathbb{R}^2$ let $\delta_{p,\alpha}=\tau_p\circ \delta_{\alpha}\circ\tau_p^{-1}$.
(b) For $p\in \mathbb{R}f_{\alpha}$ let $\sigma_{p,\alpha}=\tau_p\circ \sigma_{\alpha}\circ\tau_p^{-1}$.
(c) For $p\in \mathbb{R}f_{\alpha}$, $q\in \mathbb{R}e_{\alpha}$ let $\gamma_{q,p,\alpha}=\tau_q\circ \sigma_{p,\alpha}$.
Let $\beta\in \text{Isom}(\mathbb{R}^2)$. Then one of the following statements is true.
(i) $\beta=\text{id}$
(ii) $\beta=r_v$, $0\neq v\in \mathbb{R}^2$.
(iii) $\beta=\delta_{p,\alpha}$,$0<\alpha<2\pi$
(iv) $\beta=\sigma_{p,\alpha}$, $\alpha\in \mathbb{R}$, $p\in \mathbb{R}f_{\alpha}$
(v) $\beta=\gamma_{q,p,\alpha}$, $\alpha\in \mathbb{R}$, $p\in \mathbb{R}f_{\alpha}$ , $q\in \mathbb{R}e_{\alpha}$ , $0\neq q$
So we have to check which of these cases for $\beta$ we have an isometry, or not?
The identity function is in $\text{Isom}(\mathbb{R}^2)$, isn't it?
For the other ones do we have to checkif these maps are bijective? :unsure: