Checking My Understanding: Lagrangian & Path Integral Formulation

In summary: I'm sorry, but I don't understand what you did. You inserted the constant ##v## which has no meaning in the present context. You cannot arbitrarily introduce new quantities not appearing in the Lagrangian. And the way you changed some ##x## to ##x_1## and some to ##x_2## is not obvious. I don't think that what you did is correct.
  • #1
redtree
330
13
I note the following:

\begin{equation}

\begin{split}

\langle \vec{x}| \hat{U}(t-t_0) | \vec{x}_0 \rangle&=\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle

\\

&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \delta(\vec{x}-\vec{x}_0)

\end{split}

\end{equation}Given:

\begin{equation}

\begin{split}

\delta(\vec{x}-\vec{x}_0) &= \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}

\\

&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)} e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)}

\\

&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \left(\vec{k}(\vec{x}-\vec{x}_0)- \frac{\mathcal{H}}{\hbar} (t-t_0)\right)}

\\

&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}- \frac{\mathcal{H}}{\hbar} \right)}

\end{split}

\end{equation}Given ##\vec{v}=\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}##:

\begin{equation}

\begin{split}

\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\mathcal{H}}{\hbar} \right)}

\end{split}

\end{equation}Given:

\begin{equation}

\begin{split}

\frac{\mathcal{H}}{\hbar}&=\frac{T}{\hbar} + \frac{V}{\hbar}

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

\frac{T}{\hbar}&=\frac{\vec{p}^2}{2 m \hbar}

\end{split}

\end{equation}Given ##\vec{p}=\hbar\vec{k}##:

\begin{equation}

\begin{split}

\frac{T}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2

\end{split}

\end{equation}Thus:

\begin{equation}

\begin{split}

\frac{\mathcal{H}}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2 + \frac{V}{\hbar}

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}

\end{split}

\end{equation}Where:

\begin{equation}

\begin{split}

\vec{k}\vec{v}&=\frac{m}{m}\vec{k}\vec{v}

\\

&=\frac{\vec{k}\vec{p}}{m}

\\

&=\frac{\hbar \vec{k}^2}{m}

\end{split}

\end{equation}Such that:

\begin{equation}

\begin{split}

\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{m}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}

\\

&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{2m} - \frac{V}{\hbar} \right)}

\\

&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{T}{\hbar} - \frac{V}{\hbar} \right)}

\end{split}

\end{equation}Given the Lagrangian ##\mathcal{L}= T- V##:

\begin{equation}

\begin{split}

\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\mathcal{L}}{\hbar} \right)}

\end{split}

\end{equation}

I want to make sure that I am understanding this correctly. Is this correct? If not, where is my mistake?
 
Physics news on Phys.org
  • #2
First I would like to say that the Hamiltonian operators appearing in the first and second line in eq. (1) are not really the same. In the first line the Hamiltonian is still in operator form while in the second the it's already expressed in position space. In equation (3), I don't think you can arbitrarily swap the order of the exponential containing ##x-x_0## and that containing ##H##. If the one with ##x-x0## follows the one with ##H## then it's supposed to be understood as ##\exp \left( 2\pi i H(t-t_0)/\hbar \right)## acting on ##\exp(ik(x-x_0))##.
 
  • #3
It's not as simple since ##V## is a function of ##\hat{x}##. For the free particle you can of course simply insert a unit operator in terms of the completeness relation of momentum eigenstates (I set ##\hbar=h/2 \pi=1## for simplicity):
$$\langle \vec{x}|\exp(-\mathrm{i} t \hat{\vec{p}^2}/(2m)|\vec{x}' \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \langle \vec{x}|\exp(-\mathrm{i} t \hat{\vec{p}^2}/(2m)|\vec{p} \rangle \langle p|\vec{x}' \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \frac{1}{(2 \pi)^3} \exp[-\vec{p}^2 t /(2m)] \exp(\mathrm{i} \vec{p}(\vec{x}-\vec{x}').$$
Now you regularize the integral by making ##t \rightarrow t-\mathrm{i} \epsilon## with ##\epsilon>0##. Then you get a Gaussian integral which can be solved easily.

For ##V \neq 0## this trick doesn't work anymore, and you have to use other techniques. To make contact with the action in Lagrange form the Feynman path-integral approach is a good one. You find a simple introduction in my QFT manuscript (also for non-relativistic QT in Chpt. 1):

http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf
 
  • #4
vanhees71 said:
It's not as simple since ##V## is a function of ##\hat{x}##.

I apologize for not seeing, but how does ##V = V(\vec{x})## change things?
 
  • #5
You'd need to insert the more complicated complete set of energy eigenstates of the complete Hamiltonian including the potential, and it's usually not so simple to evaluate the corresponding sum/integral. It can be done, e.g., for the harmonic oscillator.
 
  • #6
Thank you for your reply. Your manuscript is very good.From your manuscript, equation 1.56, I extract the following term:

\begin{equation}

\begin{split}

\text{exp}\left[-i\Delta t \sum_{k=1}^{N} \frac{\vec{p}_{k}^2}{2 m}+ V(\vec{x}_{k}) + i \sum_{k=1}^{N} \vec{p}_{k}(\vec{x}_{k+1}-\vec{x}_{k})\right]

\end{split}

\end{equation}For simplicity and the purposes of this discussion, I set ##N=1##, such that:

\begin{equation}

\begin{split}

\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}(\vec{x}_{2}-\vec{x}_{1})\right]&=\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}\Delta t \frac{(\vec{x}_{2}-\vec{x}_{1})}{\Delta t}\right]

\end{split}

\end{equation}Given ##\vec{v}=\frac{(\vec{x}_{2}-\vec{x}_{1})}{\Delta t}##:

\begin{equation}

\begin{split}

\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \vec{p}_{1}(\vec{x}_{2}-\vec{x}_{1})\right]&=\text{exp}\left[-i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}+ V(\vec{x}_{1})\right) + i \Delta t \vec{p}_{1} \vec{v}\right]

\\

&=\text{exp}\left[i\Delta t \left(\vec{p}_{1} \vec{v}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

\\

&=\text{exp}\left[i\Delta t \left(\vec{p}_{1} \vec{v}\frac{m}{m}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

\\

&=\text{exp}\left[i\Delta t \left(\frac{\vec{p}_{1}^2}{m}-\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

\\

&=\text{exp}\left[i\Delta t \left(\frac{\vec{p}_{1}^2}{2 m}- V(\vec{x}_{1})\right) \right]

\\

&=\text{exp}\left[i\Delta t \left(\mathcal{L}\right) \right]

\end{split}

\end{equation}Which seems essentially the same as my derivation above.
 
  • #7
Yes, it's essentially integrating out the momentum in the Hamiltonian version of the path integral (which must always be the starting point). Then, indeed, if the Hamiltonian is of this specific form, you get the Lagrangian version with the classical Lagrangian. If you have interactions involving the momenta (or velocities in the Lagrangian), you get something different when integrating out the momentum.
 

FAQ: Checking My Understanding: Lagrangian & Path Integral Formulation

What is the Lagrangian formulation in physics?

The Lagrangian formulation is a mathematical framework used to describe the motion of particles or systems in classical mechanics. It is based on the principle of least action, which states that the path taken by a particle between two points is the one that minimizes the action, a quantity defined as the integral of the Lagrangian over time.

What is the path integral formulation in physics?

The path integral formulation is a mathematical approach used to calculate the probability of a particle or system moving between two points in quantum mechanics. It involves summing over all possible paths that the particle can take, weighted by a phase factor determined by the action of each path.

How are the Lagrangian and path integral formulations related?

The Lagrangian formulation and path integral formulation are two different approaches to studying the dynamics of systems in physics. However, they are closely related, with the path integral formulation being a generalization of the Lagrangian formulation in quantum mechanics.

Why are the Lagrangian and path integral formulations useful?

The Lagrangian and path integral formulations provide powerful mathematical tools for understanding and predicting the behavior of physical systems. They allow for the calculation of physical quantities and predictions of the behavior of particles and systems in both classical and quantum mechanics.

What are some real-world applications of the Lagrangian and path integral formulations?

The Lagrangian and path integral formulations have a wide range of applications in various fields, including mechanics, electromagnetism, quantum field theory, and general relativity. They are used to study and understand the behavior of physical systems at the atomic, molecular, and cosmic scales.

Similar threads

Replies
7
Views
2K
Replies
5
Views
1K
Replies
15
Views
2K
Replies
13
Views
1K
Replies
5
Views
2K
Back
Top