- #1
redtree
- 330
- 13
I note the following:
\begin{equation}
\begin{split}
\langle \vec{x}| \hat{U}(t-t_0) | \vec{x}_0 \rangle&=\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle
\\
&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \delta(\vec{x}-\vec{x}_0)
\end{split}
\end{equation}Given:
\begin{equation}
\begin{split}
\delta(\vec{x}-\vec{x}_0) &= \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)} e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \left(\vec{k}(\vec{x}-\vec{x}_0)- \frac{\mathcal{H}}{\hbar} (t-t_0)\right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}- \frac{\mathcal{H}}{\hbar} \right)}
\end{split}
\end{equation}Given ##\vec{v}=\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}##:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\mathcal{H}}{\hbar} \right)}
\end{split}
\end{equation}Given:
\begin{equation}
\begin{split}
\frac{\mathcal{H}}{\hbar}&=\frac{T}{\hbar} + \frac{V}{\hbar}
\end{split}
\end{equation}Where:
\begin{equation}
\begin{split}
\frac{T}{\hbar}&=\frac{\vec{p}^2}{2 m \hbar}
\end{split}
\end{equation}Given ##\vec{p}=\hbar\vec{k}##:
\begin{equation}
\begin{split}
\frac{T}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2
\end{split}
\end{equation}Thus:
\begin{equation}
\begin{split}
\frac{\mathcal{H}}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2 + \frac{V}{\hbar}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}
\end{split}
\end{equation}Where:
\begin{equation}
\begin{split}
\vec{k}\vec{v}&=\frac{m}{m}\vec{k}\vec{v}
\\
&=\frac{\vec{k}\vec{p}}{m}
\\
&=\frac{\hbar \vec{k}^2}{m}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{m}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{2m} - \frac{V}{\hbar} \right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{T}{\hbar} - \frac{V}{\hbar} \right)}
\end{split}
\end{equation}Given the Lagrangian ##\mathcal{L}= T- V##:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\mathcal{L}}{\hbar} \right)}
\end{split}
\end{equation}
I want to make sure that I am understanding this correctly. Is this correct? If not, where is my mistake?
\begin{equation}
\begin{split}
\langle \vec{x}| \hat{U}(t-t_0) | \vec{x}_0 \rangle&=\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle
\\
&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \delta(\vec{x}-\vec{x}_0)
\end{split}
\end{equation}Given:
\begin{equation}
\begin{split}
\delta(\vec{x}-\vec{x}_0) &= \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} \int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \vec{k}(\vec{x}-\vec{x}_0)} e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i \left(\vec{k}(\vec{x}-\vec{x}_0)- \frac{\mathcal{H}}{\hbar} (t-t_0)\right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}- \frac{\mathcal{H}}{\hbar} \right)}
\end{split}
\end{equation}Given ##\vec{v}=\frac{(\vec{x}-\vec{x}_0)}{(t-t_0)}##:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\mathcal{H}}{\hbar} \right)}
\end{split}
\end{equation}Given:
\begin{equation}
\begin{split}
\frac{\mathcal{H}}{\hbar}&=\frac{T}{\hbar} + \frac{V}{\hbar}
\end{split}
\end{equation}Where:
\begin{equation}
\begin{split}
\frac{T}{\hbar}&=\frac{\vec{p}^2}{2 m \hbar}
\end{split}
\end{equation}Given ##\vec{p}=\hbar\vec{k}##:
\begin{equation}
\begin{split}
\frac{T}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2
\end{split}
\end{equation}Thus:
\begin{equation}
\begin{split}
\frac{\mathcal{H}}{\hbar}&=\frac{\hbar}{2 m }\vec{k}^2 + \frac{V}{\hbar}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\vec{k}\vec{v}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}
\end{split}
\end{equation}Where:
\begin{equation}
\begin{split}
\vec{k}\vec{v}&=\frac{m}{m}\vec{k}\vec{v}
\\
&=\frac{\vec{k}\vec{p}}{m}
\\
&=\frac{\hbar \vec{k}^2}{m}
\end{split}
\end{equation}Such that:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{m}- \frac{\hbar}{2 m }\vec{k}^2 - \frac{V}{\hbar} \right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\hbar \vec{k}^2}{2m} - \frac{V}{\hbar} \right)}
\\
&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{T}{\hbar} - \frac{V}{\hbar} \right)}
\end{split}
\end{equation}Given the Lagrangian ##\mathcal{L}= T- V##:
\begin{equation}
\begin{split}
\langle \vec{x}| e^{-2 \pi i \frac{\mathcal{H}}{\hbar} (t-t_0)} | \vec{x}_0 \rangle&=\int_{-\infty}^{\infty} d\vec{k} e^{2 \pi i (t-t_0)\left(\frac{\mathcal{L}}{\hbar} \right)}
\end{split}
\end{equation}
I want to make sure that I am understanding this correctly. Is this correct? If not, where is my mistake?