- #1
Lambda96
- 204
- 72
- Homework Statement
- Check whether the series ##\sum\limits_{k=1}^{\infty} \frac{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}{3^{k}}## converges
- Relevant Equations
- All convergence criteria are allowed
Hi,
I am having problems with task d)
I now wanted to check the convergence using the quotient test, so ## \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1##
I have now proceeded as follows:
##\frac{a_{n+1}}{a_n}=\frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{3^{k+1}} \cdot \frac{3^{k}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##
##\frac{a_{n+1}}{a_n}=\frac{1}{3} \frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##
##\frac{a_{n+1}}{a_n}=\frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2}##
Unfortunately I can't get any further now, if I form the limit ##\lim_{k\to\infty} \frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2} ## with Mathematica, ##\frac{e}{3}## must come out, unfortunately I don't know how I can show this with my expression, or should I have used a different criterion for the task?
I am having problems with task d)
I now wanted to check the convergence using the quotient test, so ## \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1##
I have now proceeded as follows:
##\frac{a_{n+1}}{a_n}=\frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{3^{k+1}} \cdot \frac{3^{k}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##
##\frac{a_{n+1}}{a_n}=\frac{1}{3} \frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##
##\frac{a_{n+1}}{a_n}=\frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2}##
Unfortunately I can't get any further now, if I form the limit ##\lim_{k\to\infty} \frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2} ## with Mathematica, ##\frac{e}{3}## must come out, unfortunately I don't know how I can show this with my expression, or should I have used a different criterion for the task?