- #1
Dustinsfl
- 2,281
- 5
$y''+y = e^{it}+e^{3it}$
Solution
$y = Ae^{it}-\dfrac{1}{8}e^{3it}-\dfrac{it}{2}e^{it}$
and
$y''+4y=1+\sin t+\sin 2t$
Solution
$y=A\cos 2t + B\sin 2t + \dfrac{1}{4} + \dfrac{1}{3}\sin t - \dfrac{t}{4}\cos 2t$
Correct?
Solution
$y = Ae^{it}-\dfrac{1}{8}e^{3it}-\dfrac{it}{2}e^{it}$
and
$y''+4y=1+\sin t+\sin 2t$
Solution
$y=A\cos 2t + B\sin 2t + \dfrac{1}{4} + \dfrac{1}{3}\sin t - \dfrac{t}{4}\cos 2t$
Correct?