- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to calculate $$\iint_{\Sigma}\left (ydy\land dz+zdz\land dx+zdx\land dy\right )$$ where $\Sigma$ is the surface that is described by $x^2+y^2+z^2=1$ and $y\geq 0$ and has such an orientation that the perpendicular vectors that implies have a direction away from the point $(0,0,0)$.
Do we use here spherical coordinates?
$$x=\cos\theta\sin\phi , \ y=\sin\theta\sin\phi, \ z=\cos \phi$$ Since $y\geq 0$ we get that $\theta, \phi\in [0,\pi]$, right?
We have that $$\iint_{\Sigma}(P dy\land dz+Q dz\land dx + Rdx\land dy)=\iint_D\left (P(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(y,z)}}{\partial{(\theta, \phi)}}+Q(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(z,x)}}{\partial{(\theta, \phi)}}+R(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(x,y)}}{\partial{(\theta, \phi)}}\right )d\theta d\phi$$
where $$\frac{\partial{(y,z)}}{\partial{(\theta, \phi)}}=-\cos\theta\sin^2\phi, \ \frac{\partial{(z,x)}}{\partial{(\theta, \phi)}}=-\sin\theta\sin^2\phi, \ \frac{\partial{(x,y)}}{\partial{(\theta, \phi)}}=-\sin\phi\cos\phi$$
Therefore, we get \begin{align*}\iint_{\Sigma}\left (ydy\land dz+zdz\land dx+zdx\land dy\right )&=\iint_D\left (-\sin\theta\sin\phi\cos\theta\sin^2\phi-\cos \phi\sin\theta\sin^2\phi-\cos \phi\sin\phi\cos\phi\right )d\theta d\phi \\ & =\iint_D\left (-\sin\theta\sin\phi\cos\theta\sin^2\phi-\cos \phi\sin\theta\sin^2\phi-\sin\phi\cos^2\phi\right )d\theta d\phi\end{align*}
Is everything correct so far? How do we use the given information about the orientation? (Wondering)
I want to calculate $$\iint_{\Sigma}\left (ydy\land dz+zdz\land dx+zdx\land dy\right )$$ where $\Sigma$ is the surface that is described by $x^2+y^2+z^2=1$ and $y\geq 0$ and has such an orientation that the perpendicular vectors that implies have a direction away from the point $(0,0,0)$.
Do we use here spherical coordinates?
$$x=\cos\theta\sin\phi , \ y=\sin\theta\sin\phi, \ z=\cos \phi$$ Since $y\geq 0$ we get that $\theta, \phi\in [0,\pi]$, right?
We have that $$\iint_{\Sigma}(P dy\land dz+Q dz\land dx + Rdx\land dy)=\iint_D\left (P(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(y,z)}}{\partial{(\theta, \phi)}}+Q(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(z,x)}}{\partial{(\theta, \phi)}}+R(x(\theta, \phi), y(\theta, \phi), z(\theta, \phi))\frac{\partial{(x,y)}}{\partial{(\theta, \phi)}}\right )d\theta d\phi$$
where $$\frac{\partial{(y,z)}}{\partial{(\theta, \phi)}}=-\cos\theta\sin^2\phi, \ \frac{\partial{(z,x)}}{\partial{(\theta, \phi)}}=-\sin\theta\sin^2\phi, \ \frac{\partial{(x,y)}}{\partial{(\theta, \phi)}}=-\sin\phi\cos\phi$$
Therefore, we get \begin{align*}\iint_{\Sigma}\left (ydy\land dz+zdz\land dx+zdx\land dy\right )&=\iint_D\left (-\sin\theta\sin\phi\cos\theta\sin^2\phi-\cos \phi\sin\theta\sin^2\phi-\cos \phi\sin\phi\cos\phi\right )d\theta d\phi \\ & =\iint_D\left (-\sin\theta\sin\phi\cos\theta\sin^2\phi-\cos \phi\sin\theta\sin^2\phi-\sin\phi\cos^2\phi\right )d\theta d\phi\end{align*}
Is everything correct so far? How do we use the given information about the orientation? (Wondering)