MHB Chris 's question at Yahoo Answers (Inverse of cA)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
AI Thread Summary
If A is an invertible matrix and c is a non-zero scalar, then the matrix cA is also invertible. The inverse of cA can be expressed as (cA)^{-1} = (1/c)A^{-1}. This conclusion is derived using properties of scalar multiplication and matrix multiplication. The proof confirms that multiplying cA by its inverse yields the identity matrix. Thus, the relationship between cA and its inverse is established clearly.
Mathematics news on Phys.org
Hello Chris,

Suppose $c\neq 0$. Then, using the well known properties $(\lambda M) N=M(\lambda N)=\lambda (MN)$ and $\lambda(\mu M)=(\lambda\mu)M$ : $$(cA)\left(\frac{1}{c}A^{-1}\right)=\frac{1}{c}\left((cA)A^{-1}\right)=\frac{1}{c}\left(c\;\left(AA^{-1}\right)\right)=\left(\frac{1}{c}\cdot c\right)I=1I=I$$ So, $cA$ is invertivle and $(cA)^{-1}=\dfrac{1}{c}A^{-1}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top