- #1
RChristenk
- 64
- 9
- Homework Statement
- Under what conditions on the coefficients ##a,b,c## does the equation ##x^2+y^2+ax+by+c=0## represent a circle? When that condition is satisfied, find the center and radius of the circle.
- Relevant Equations
- Basic form of circle equation
##x^2+ax+y^2+by=-c##
##\Leftrightarrow (x+\dfrac{a}{2})^2+(y+\dfrac{b}{2})^2=-c+\dfrac{a^2}{4}+\dfrac{b^2}{4}##
The conditions under which the coefficients of this equation makes a circle:
##-c+\dfrac{a^2+b^2}{4}>0##
##\Leftrightarrow 4c < a^2+b^2##
Center of circle: ##(-\dfrac{a}{2}, -\dfrac{b}{2})##
Radius of circle: ##\sqrt{\dfrac{a^2+b^2-4c}{4}} \Rightarrow \dfrac{\sqrt{a^2+b^2-4c}}{2}##
The question I have is the solution gives the radius of the circle as: ##\dfrac{\sqrt{a^2+b^2-4ac}}{2}##. Where did that extra ##a## in ##-4ac## come from?
##\Leftrightarrow (x+\dfrac{a}{2})^2+(y+\dfrac{b}{2})^2=-c+\dfrac{a^2}{4}+\dfrac{b^2}{4}##
The conditions under which the coefficients of this equation makes a circle:
##-c+\dfrac{a^2+b^2}{4}>0##
##\Leftrightarrow 4c < a^2+b^2##
Center of circle: ##(-\dfrac{a}{2}, -\dfrac{b}{2})##
Radius of circle: ##\sqrt{\dfrac{a^2+b^2-4c}{4}} \Rightarrow \dfrac{\sqrt{a^2+b^2-4c}}{2}##
The question I have is the solution gives the radius of the circle as: ##\dfrac{\sqrt{a^2+b^2-4ac}}{2}##. Where did that extra ##a## in ##-4ac## come from?