- #1
Dustinsfl
- 2,281
- 5
Gamma is a circle of radius 2 oriented counterclockwise.
$$
\int_{\gamma}\frac{dz}{z^2+1} = \int_{\gamma} = \frac{i}{2}\left[\int_{\gamma}\frac{1}{z+i}dz-\int_{\gamma}\frac{1}{z-i}dz\right]
$$
$\gamma(t) = 2e^{it}, \ \ \gamma'(t) = 2ie^{it}$
$$
\int_{\gamma}\frac{2ie^{it}}{2e^{it}+i}dz
$$
Now what can I do from here (just looking at the first integral)?
$$
\int_{\gamma}\frac{dz}{z^2+1} = \int_{\gamma} = \frac{i}{2}\left[\int_{\gamma}\frac{1}{z+i}dz-\int_{\gamma}\frac{1}{z-i}dz\right]
$$
$\gamma(t) = 2e^{it}, \ \ \gamma'(t) = 2ie^{it}$
$$
\int_{\gamma}\frac{2ie^{it}}{2e^{it}+i}dz
$$
Now what can I do from here (just looking at the first integral)?