- #1
Dustinsfl
- 2,281
- 5
gamma is a circle of radius 2, centered at the origin, and oriented counterclockwise
$\displaystyle\int_{\gamma}\frac{dz}{z^2+1} =\int_{\gamma}\frac{dz}{(z+i)(z-i)}=\frac{1}{2}\int_{\gamma}\frac{\frac{1}{z-i}}{z-(-i)}dz+\int_{\gamma}\frac{\frac{1}{z+i}}{z-i}dz = 4\pi i\left(\frac{1}{-2i}+\frac{1}{2i}\right) = 0$Is this correct?
$\displaystyle\int_{\gamma}\frac{dz}{z^2+1} =\int_{\gamma}\frac{dz}{(z+i)(z-i)}=\frac{1}{2}\int_{\gamma}\frac{\frac{1}{z-i}}{z-(-i)}dz+\int_{\gamma}\frac{\frac{1}{z+i}}{z-i}dz = 4\pi i\left(\frac{1}{-2i}+\frac{1}{2i}\right) = 0$Is this correct?