Circular motion, coin on a rotating disk

In summary, the concept of circular motion can be illustrated by a coin placed on a rotating disk. As the disk spins, the coin experiences centripetal force, which keeps it moving in a circular path. The relationship between the coin's speed, the radius of its circular path, and the forces acting on it demonstrates key principles of rotational dynamics, including the effects of friction and the importance of angular velocity. Understanding these dynamics helps explain how objects behave in circular motion and the conditions necessary for maintaining that motion.
  • #1
fallingforfandoms
1
0
Homework Statement
A small button placed on a horizontal rotating platform with diameter 0.520 m will revolve with the platform when it is brought up to a speed of 41.0 rev/min , provided the button is no more than 0.250 m from the axis.
How far from the axis can the button be placed, without slipping, if the platform rotates at 61.0 rev/min ?
Relevant Equations
In the previous part of the question we found mu = 0.47
mu(v^2/r)=g
First I tried to convert V = 61 rev/min to linear velocity.
frequency = 61 rev / 60 sec = 1.017 rev/sec
time = 1/f = 0.983 s
V = 2(pi)r/t = 0.52*pi/0.983= 1.662 m/s
From there I tried to find the maximum radius the coin could be at by using mu(v^2/r)=g
r = mu(v^2)/g
r= 0.47(2.76)/9.8
r= 0.13 m
That seems to be wrong though, so now I am a bit lost.
 
Physics news on Phys.org
  • #2
fallingforfandoms said:
From there I tried to find the maximum radius the coin could be at by using mu(v^2/r)=g
Where did you get this equation? Check your source.
 
  • #3
Welcome to Physics Forums!

fallingforfandoms said:
Relevant Equations:
mu(v^2/r)=g
This formula as written is not correct. Check it.

fallingforfandoms said:
frequency = 61 rev / 60 sec = 1.017 rev/sec
time = 1/f = 0.983 s
OK. (The time here is the period of revolution of the platform when it is rotating at 61 rpm.)

fallingforfandoms said:
V = 2(pi)r/t = 0.52*pi/0.983= 1.662 m/s
Did you let r equal the radius of the platform in this calculation? If so, wouldn't V then equal the linear speed of a point at the outer edge of the platform? Is that the speed that you want?
 
Back
Top