- #1
maskd
- 3
- 0
(a) What's the time between 9h and 10h in which the minute and hour pointers are equal? (b) After midday, what's the first time in which the three pointers are equal?
For (a), I tried to do:
[tex]\Theta = \Theta_0 + \omega_{hours} \cdot t[/tex]
[tex]\omega = \frac{2 \cdot \pi}{T}[/tex]
[tex]\Theta_0 = 270^o[/tex]
[tex]\Theta = 270 + \frac{2\cdot \pi \cdot t}{60 \cdot 60 \cdot 12}[/tex]
[tex]\Theta = \Theta_0 + \omega_{minutes} \cdot t[/tex]
[tex]\Theta_0 = 0^o[/tex]
[tex]\Theta = \frac{2 \cdot \pi \cdot t}{60 \cdot 60}[/tex]
[tex]270 + \frac{2\cdot \pi \cdot t}{60 \cdot 60 \cdot 12} = \frac{2 \cdot \pi \cdot t}{60 \cdot 60}[/tex],
But the result of this equation is much bigger than 1 hour. So what's wrong?
I didn't try (b) yet but probably I need some clarification on (a) to give it a shot.
For (a), I tried to do:
[tex]\Theta = \Theta_0 + \omega_{hours} \cdot t[/tex]
[tex]\omega = \frac{2 \cdot \pi}{T}[/tex]
[tex]\Theta_0 = 270^o[/tex]
[tex]\Theta = 270 + \frac{2\cdot \pi \cdot t}{60 \cdot 60 \cdot 12}[/tex]
[tex]\Theta = \Theta_0 + \omega_{minutes} \cdot t[/tex]
[tex]\Theta_0 = 0^o[/tex]
[tex]\Theta = \frac{2 \cdot \pi \cdot t}{60 \cdot 60}[/tex]
[tex]270 + \frac{2\cdot \pi \cdot t}{60 \cdot 60 \cdot 12} = \frac{2 \cdot \pi \cdot t}{60 \cdot 60}[/tex],
But the result of this equation is much bigger than 1 hour. So what's wrong?
I didn't try (b) yet but probably I need some clarification on (a) to give it a shot.
Last edited: